80 research outputs found
In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment
The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum
efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and
is of significant interest for future dark matter and neutrino experiments
where high signal yields are needed.
We report on the methods developed for in-situ characterization and
monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of
typical measured single-photoelectron charge distributions, correlated noise
(afterpulsing), dark noise, double, and late pulsing characteristics. The
characterization is performed during the detector commissioning phase using
laser light injected through a light diffusing sphere and during normal
detector operation using LED light injected through optical fibres
Modeling Light Adaptation in Circadian Clock: Prediction of the Response That Stabilizes Entrainment
Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature
Crucial Role of Mechanisms and Modes of Toxic Action for Understanding Tissue Residue Toxicity and Internal Effect Concentrations of Organic Chemicals
This article reviews the mechanistic basis of the tissue residue approach for toxicity assessment (TRA). The tissue residue approach implies that whole-body or organ concentrations (residues) are a better dose metric for describing toxicity to aquatic organisms than is the aqueous concentration typically used in the external medium. Although the benefit of internal concentrations as dose metrics in ecotoxicology has long been recognized, the application of the tissue residue approach remains limited. The main factor responsible for this is the difficulty of measuring internal concentrations. We propose that environmental toxicology can advance if mechanistic considerations are implemented and toxicokinetics and toxicodynamics are explicitly addressed. The variability in ecotoxicological outcomes and species sensitivity is due in part to differences in toxicokinetics, which consist of several processes, including absorption, distribution, metabolism, and excretion (ADME), that influence internal concentrations. Using internal concentrations or tissue residues as the dose metric substantially reduces the variability in toxicity metrics among species and individuals exposed under varying conditions. Total internal concentrations are useful as dose metrics only if they represent a surrogate of the biologically effective dose, the concentration or dose at the target site. If there is no direct proportionality, we advise the implementation of comprehensive toxicokinetic models that include deriving the target dose. Depending on the mechanism of toxicity, the concentration at the target site may or may not be a sufficient descriptor of toxicity. The steady-state concentration of a baseline toxicant associated with the biological membrane is a good descriptor of the toxicodynamics of baseline toxicity. When assessing specific-acting and reactive mechanisms, additional parameters (e.g., reaction rate with the target site and regeneration of the target site) are needed for characterization. For specifically acting compounds, intrinsic potency depends on 1) affinity for, and 2) type of interaction with, a receptor or a target enzyme. These 2 parameters determine the selectivity for the toxic mechanism and the sensitivity, respectively. Implementation of mechanistic information in toxicokinetic–toxicodynamic (TK–TD) models may help explain timedelayed effects, toxicity after pulsed or fluctuating exposure, carryover toxicity after sequential pulses, and mixture toxicity.We believe that this mechanistic understanding of tissue residue toxicity will lead to improved environmental risk assessment
Electromagnetic backgrounds and potassium-42 activity in the DEAP-3600 dark matter detector
See full article for abstrac
Recommended from our members
Design and construction of the DEAP-3600 dark matter detector
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) has been designed for a direct detection search for particle dark matter using a single-phase liquid argon target. The projected cross section sensitivity for DEAP-3600 to the spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10 cm for a 100 GeV/c WIMP mass with a fiducial exposure of 3 tonne-years. This paper describes the physical properties and construction of the DEAP-3600 detector. −46 2
Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB
DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark matter experiment, operating 2 km underground at SNOLAB (Sudbury, Canada). The detector consists of 3279 kg of LAr contained in a spherical acrylic vessel. This paper reports on the analysis of a 758  tonne⋅day exposure taken over a period of 231 live-days during the first year of operation. No candidate signal events are observed in the WIMP-search region of interest, which results in the leading limit on the WIMP-nucleon spin-independent cross section on a LAr target of 3.9×10−45  cm2 (1.5×10−44  cm2) for a 100  GeV/c2 (1  TeV/c2) WIMP mass at 90% C.L. In addition to a detailed background model, this analysis demonstrates the best pulse-shape discrimination in LAr at threshold, employs a Bayesian photoelectron-counting technique to improve the energy resolution and discrimination efficiency, and utilizes two position reconstruction algorithms based on the charge and photon detection time distributions observed in each photomultiplier tube
Design and construction of the DEAP-3600 dark matter detector
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) has been designed for a direct detection search for particle dark matter using a single-phase liquid argon target. The projected cross section sensitivity for DEAP-3600 to the spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10−46cm2 for a 100 GeV/c2 WIMP mass with a fiducial exposure of 3 tonne-years. This paper describes the physical properties and construction of the DEAP-3600 detector
First results from the DEAP-3600 dark matter search with argon at SNOLAB
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fidicial exposure of 9.87 tonne days) of data taken during the initial filling phase demonstrates the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage <1.2X107 (90% C.L.) between 15 and 31 keVee. No candidate signal events
are observed, which results in the leading limit on WIMP-nucleon spin-independent cross section on argon, <1.21044 cm2 for a 100 GeV/c2 WIMP mass (90% C.L.)
The liquid-argon scintillation pulseshape in DEAP-3600
DEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scintillation physics, including the so-called intermediate component, (b) the time response of the TPB wavelength shifter, including delayed TPB emission at
O(ms) time-scales, and c) PMT response. TPB is the wavelength shifter of choice in most LAr detectors. We find that approximately 10% of the intensity of the wavelength-shifted light is in a long-lived state of TPB. This causes light from an event to spill into subsequent events to an extent not usually accounted for in the design and data analysis of LAr-based detectors
- …