10,626 research outputs found
Smoothness of holonomies for codimension 1 hyperbolic dynamics
Hyperbolic invariant sets {Lambda} of C1+{gamma} diffeomorphisms where either the stable or unstable leaves are 1-dimensional are considered in this paper. Under the assumption that the {Lambda} has local product structure, the authors prove that the holonomies between the 1-dimensional leaves are C1+{alpha} for some 0 < {alpha} < 1
Rigidity of hyperbolic sets on surfaces
Given a hyperbolic invariant set of a diffeomorphism on a surface, it is proved that, if the holonomies are sufficiently smooth, then the diffeomorphism on the hyperbolic invariant set is rigid in the sense that it is C1+ conjugate to a hyperbolic affine model
Teichmüller spaces and HR structures for hyperbolic surface dynamics
We construct a Teichmüller space for the C^{1+}-conjugacy classes of hyperbolic dynamical systems on surfaces. After introducing the notion of an HR structure which associates an affine structure with each of the stable and unstable laminations, we show that there is a one-to-one correspondence between these HR structures and the C^{1+}-conjugacy classes. As part of the proof we construct a canonical representative dynamical system for each HR structure. This has the smoothest holonomies of any representative of the corresponding C^{1+}-conjugacy class. Finally, we introduce solenoid functions and show that they provide a good Teichmüller space
Existence uniqueness and ratio decomposition for Gibbs states via duality
We give an elementary proof of existence and uniqueness of Gibbs states for Hölder weight systems on subshifts of finite type. This uses a notion of duality for such subshifts. The approach of Paterson [2] is used to construct a measure with a prescribed Jacobian and the duality is used to produce an invariant measure from this
Infrared Spectroscopy of the Diffuse Ionized Halo of NGC 891
We present infrared spectroscopy from the Spitzer Space Telescope at one disk
position and two positions at a height of 1 kpc from the disk in the edge-on
spiral NGC 891, with the primary goal of studying halo ionization. Our main
result is that the [Ne III]/[Ne II] ratio, which provides a measure of the
hardness of the ionizing spectrum free from the major problems plaguing optical
line ratios, is enhanced in the extraplanar pointings relative to the disk
pointing. Using a 2D Monte Carlo-based photo-ionization code which accounts for
the effects of radiation field hardening, we find that this trend cannot be
reproduced by any plausible photo-ionization model, and that a secondary source
of ionization must therefore operate in gaseous halos. We also present the
first spectroscopic detections of extraplanar PAH features in an external
normal galaxy. If they are in an exponential layer, very rough emission
scale-heights of 330-530 pc are implied for the various features. Extinction
may be non-negligible in the midplane and reduce these scale-heights
significantly. There is little significant variation in the relative emission
from the various features between disk and extraplanar environment. Only the
17.4 micron feature is significantly enhanced in the extraplanar gas compared
to the other features, possibly indicating a preference for larger PAHs in the
halo.Comment: 35 pages in ApJ preprint format, 8 figures, accepted for publication
in ApJ. Minor change to Introduction to give appropriate credit to earlier,
related wor
Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries
Species have strong indirect effects on others, and predicting these effects is a central challenge in ecology. Prey species sharing an enemy (predator or parasitoid) can be linked by apparent competition, but it is unknown whether this process is strong enough to be a community-wide structuring mechanism that could be used to predict future states of diverse food webs. Whether species abundances are spatially coupled by enemy movement across different habitats is also untested. Here, using a field experiment, we show that predicted apparent competitive effects between species, mediated via shared parasitoids, can significantly explain future parasitism rates and herbivore abundances. These predictions are successful even across edges between natural and managed forests, following experimental reduction of herbivore densities by aerial spraying over 20ha. This result shows that trophic indirect effects propagate across networks and habitats in important, predictable ways, with implications for landscape planning, invasion biology and biological control
- …
