656 research outputs found

    Making Models Match: Replicating an Agent-Based Model

    Get PDF
    Scientists have increasingly employed computer models in their work. Recent years have seen a proliferation of agent-based models in the natural and social sciences. But with the exception of a few "classic" models, most of these models have never been replicated by anyone but the original developer. As replication is a critical component of the scientific method and a core practice of scientists, we argue herein for an increased practice of replication in the agent-based modeling community, and for widespread discussion of the issues surrounding replication. We begin by clarifying the concept of replication as it applies to ABM. Furthermore we argue that replication may have even greater benefits when applied to computational models than when applied to physical experiments. Replication of computational models affects model verification and validation and fosters shared understanding about modeling decisions. To facilitate replication, we must create standards for both how to replicate models and how to evaluate the replication. In this paper, we present a case study of our own attempt to replicate a classic agent-based model. We begin by describing an agent-based model from political science that was developed by Axelrod and Hammond. We then detail our effort to replicate that model and the challenges that arose in recreating the model and in determining if the replication was successful. We conclude this paper by discussing issues for (1) researchers attempting to replicate models and (2) researchers developing models in order to facilitate the replication of their results.Replication, Agent-Based Modeling, Verification, Validation, Scientific Method, Ethnocentrism

    Design Guidelines for Agent Based Model Visualization

    Get PDF
    In the field of agent-based modeling (ABM), visualizations play an important role in identifying, communicating and understanding important behavior of the modeled phenomenon. However, many modelers tend to create ineffective visualizations of Agent Based Models (ABM) due to lack of experience with visual design. This paper provides ABM visualization design guidelines in order to improve visual design with ABM toolkits. These guidelines will assist the modeler in creating clear and understandable ABM visualizations. We begin by introducing a non-hierarchical categorization of ABM visualizations. This categorization serves as a starting point in the creation of an ABM visualization. We go on to present well-known design techniques in the context of ABM visualization. These techniques are based on Gestalt psychology, semiology of graphics, and scientific visualization. They improve the visualization design by facilitating specific tasks, and providing a common language to critique visualizations through the use of visual variables. Subsequently, we discuss the application of these design techniques to simplify, emphasize and explain an ABM visualization. Finally, we illustrate these guidelines using a simple redesign of a NetLogo ABM visualization. These guidelines can be used to inform the development of design tools that assist users in the creation of ABM visualizations.Visualization, Design, Graphics, Guidelines, Communication, Agent-Based Modeling

    Painted demons

    Get PDF
    An anthology of short works of creative writing by William Ellis Rand

    Journal of Fishing Voyage, Schooner Speedwell, 1861

    Get PDF
    Logbook for the Schr. Speedwell, a cod fishing vessel out of Southport (Me.) whose master was Captain William E. Rand. The log records a Fishing voyage to the Banks. Includes much reference to weather conditions with some account of daily catch for individual crew members

    The Champion of Images: Understanding the role of images in the decision-making process of online hotel bookings

    Get PDF
    Images are vitally important in interesting consumers and helping them to make decisions. Images of a hotel are particularly important and were used to sell hotels even before the Internet, when travel agencies would often have brochures about hotel properties that they used to entice travelers. On many online travel agency (OTA) websites, the hotel\u27s image can take up 33% of the space on the hotel property page, but the importance of this image in the decision-making process has yet to be studied. For many OTAs, there are currently no quantitative analytic methods that help determine which image to display in this critical location. In this research, we use deep learning to extract information directly from hotel images and we apply image analytics to understand the importance of this information in the online hotel booking process. To provide managerial insights, we will combine a prediction model, with the t-distributed Stochastic Neighbor Embedding (t-SNE) to classify and understand the types of images hotels generally use as their thumbnail or champion image and what aspects of these images elicit consumers to consider and book a hotel

    Use of clustering for consideration set modeling in recommender systems

    Get PDF
    The cold-start problem has become a significant challenge in recommender systems. To solve this problem, most approaches use various user-side data and combine them with item-side information in their systems design. However, when such user data is not available, those methods become unfeasible. We provide a novel recommender system design approach which is based on two-stage decision heuristics. By utilizing only the item-side characteristics we first identify the structure of the final choice set and then generate it using stochastic and deterministic approaches
    corecore