54 research outputs found

    The effect of MgO/TiO2 on structural and crystallization behavior of near invert phosphate-based glasses

    Get PDF
    Varying formulations in the glass system of 40P2 O5 ─(24 - x)MgO─(16 + x)CaO─(20 - y)Na2 O─yTiO2 (where 0 ≤ x ≤ 22 and y = 0 or 1) were prepared via melt-quenching. The structure of the glasses was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), micro Raman and solid-state nuclear magnetic resonance (NMR) spectroscopies. The thermal properties and the activation energy of crystallization (Ec ) were measured using thermal analysis and the Kissinger equation, respectively. The glass forming ability of the formulations investigated was seen to decrease with reducing MgO content down to 8 mol% and the glass stability region also decreased from 106 to 90°C with decreasing MgO content. The activation energy of crystallization (Ec ) values also decreased from 248 (for 24 mol% MgO glass) to 229 kJ/mol (for the 8 mol% MgO content) with the replacement of MgO by CaO for glasses with no TiO2 . The formulations containing less than 8 mol% MgO without TiO2 showed a strong tendency toward crystallization. However, the addition of 1 mol% TiO2 in place of Na2 O for these glasses with less than 8 mol% MgO content, inhibited their crystallization tendency. Glasses containing 8 mol% MgO with 1 mol% TiO2 revealed a 12°C higher glass transition temperature, a 14°C increase in glass stability against crystallization and a 38 kJ/mol increase in Ec in comparison to their non TiO2 containing counterpart. NMR spectroscopy revealed that all of the formulations contained almost equal percentages of Q1 and Q2 species. However, FTIR and Raman spectroscopies showed that the local structure of the glasses had been altered with addition of 1 mol% TiO2 , which acted as a network modifier, impeding crystallization by increasing the cross-linking between phosphate chains and consequently leading to increased Ec as well as their glass forming ability

    The effect of MgO/TiO2 on structural and crystallization behavior of near invert phosphate-based glasses

    Get PDF
    Varying formulations in the glass system of 40P2O5─(24 − x)MgO─(16 + x)CaO─(20 − y)Na2O─yTiO2 (where 0 ≤ x ≤ 22 and y = 0 or 1) were prepared via melt-quenching. The structure of the glasses was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), micro Raman and solid-state nuclear magnetic resonance (NMR) spectroscopies. The thermal properties and the activation energy of crystallization (Ec) were measured using thermal analysis and the Kissinger equation, respectively. The glass forming ability of the formulations investigated was seen to decrease with reducing MgO content down to 8 mol% and the glass stability region also decreased from 106 to 90°C with decreasing MgO content. The activation energy of crystallization (Ec) values also decreased from 248 (for 24 mol% MgO glass) to 229 kJ/mol (for the 8 mol% MgO content) with the replacement of MgO by CaO for glasses with no TiO2. The formulations containing less than 8 mol% MgO without TiO2 showed a strong tendency toward crystallization. However, the addition of 1 mol% TiO2 in place of Na2O for these glasses with less than 8 mol% MgO content, inhibited their crystallization tendency. Glasses containing 8 mol% MgO with 1 mol% TiO2 revealed a 12°C higher glass transition temperature, a 14°C increase in glass stability against crystallization and a 38 kJ/mol increase in Ec in comparison to their non TiO2 containing counterpart. NMR spectroscopy revealed that all of the formulations contained almost equal percentages of Q1 and Q2 species. However, FTIR and Raman spectroscopies showed that the local structure of the glasses had been altered with addition of 1 mol% TiO2, which acted as a network modifier, impeding crystallization by increasing the cross-linking between phosphate chains and consequently leading to increased Ec as well as their glass forming ability

    QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)

    Get PDF
    A quantitative trait locus (QTL) analysis designed for a multi-parent population was carried out and tested in oil palm (Elaeis guineensis Jacq.), which is a diploid cross-fertilising perennial species. A new extension of the MCQTL package was especially designed for crosses between heterozygous parents. The algorithm, which is now available for any allogamous species, was used to perform and compare two types of QTL search for small size families, within-family analysis and across-family analysis, using data from a 2 × 2 complete factorial mating experiment involving four parents from three selected gene pools. A consensus genetic map of the factorial design was produced using 251 microsatellite loci, the locus of the Sh major gene controlling fruit shell presence, and an AFLP marker of that gene. A set of 76 QTLs involved in 24 quantitative phenotypic traits was identified. A comparison of the QTL detection results showed that the across-family analysis proved to be efficient due to the interconnected families, but the family size issue is just partially solved. The identification of QTL markers for small progeny numbers and for marker-assisted selection strategies is discussed

    A cross-curricular physical activity intervention to combat cardiovascular disease risk factors in 11-14 year olds: 'Activity Knowledge Circuit'

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality worldwide. Risk factors associated with cardiovascular disease have been shown to track from childhood through to adulthood. Previous school-based physical activity interventions have demonstrated modest improvements to cardiovascular disease risk factors by implementing extra-curricular activities or improving current physical education curriculum. Few have attempted to increase physical activity in class-room taught curriculum subjects. This study will outline a school-based cross-curricular physical activity intervention to combat cardiovascular disease risk factors in 11-14 year old children. Method/Design: A South Wales Valley school of low socio-economic status has been selected to take part. Participants from year eight (12-13 years) are to be assigned to an intervention group, with maturation-matched participants from years seven (11-12 years) and nine (13-14 years) assigned to a control group. A cross-curricular physical activity intervention will be implemented to increase activity by two hours a week for 18 weeks. Participants will briskly walk 3200 m twice weekly during curriculum lessons (60 minutes duration). With the exception of physical education, all curriculum subjects will participate, with each subject delivering four intervention lessons. The intervention will be performed outdoors and on school premises. An indoor course of equal distance will be used during adverse weather conditions. Cardiovascular disease risk factors will be measured pre- and post-intervention for intervention and control groups. These will take place during physical education lessons and will include measures of stature, mass, waist, hip, and neck circumferences, together with skinfold measure's taken at four sites. Blood pressure will be measured, and fitness status assessed via the 20 m multi-stage fitness test. Questionnaires will be used to determine activity behaviour (physical activity questionnaire for adolescence), diet (seven day food diary) and maturation status. Fasting blood variables will include total cholesterol, lowdensity lipoprotein cholesterol, high density lipoprotein cholesterol, triglycerides, insulin, glucose, high-sensitivity C-reactive protein, interleukin-6, adiponectin, and fibrinogen. Motivational variables and psychological well-being will be assessed by questionnaire. Discussion: Our study may prove to be a cost effective strategy to increase school time physical activity to combat cardiovascular disease risk factors in children.</p

    Hearing and dementia

    Get PDF
    Hearing deficits associated with cognitive impairment have attracted much recent interest, motivated by emerging evidence that impaired hearing is a risk factor for cognitive decline. However, dementia and hearing impairment present immense challenges in their own right, and their intersection in the auditory brain remains poorly understood and difficult to assess. Here, we outline a clinically oriented, symptom-based approach to the assessment of hearing in dementias, informed by recent progress in the clinical auditory neuroscience of these diseases. We consider the significance and interpretation of hearing loss and symptoms that point to a disorder of auditory cognition in patients with dementia. We identify key auditory characteristics of some important dementias and conclude with a bedside approach to assessing and managing auditory dysfunction in dementia

    Chemistry at the nanoscale: synthesis of an N@C60-N@C60 endohedral fullerene dimer.

    No full text
    Rattling the cage: The rapid one-pot double 1,3-dipolar cycloaddition reaction of the rare endohedral fullerene N@C 60 to an oligo(p-phenylene polyethylene) bis(aldehyde) using a novel amino acid derivative as an anchoring group is reported. The method provides the first example of a chemically linked, two-spin-center N@C 60-N@C 60 molecule (see picture). Assessment of this platform as an element of a quantum computing register is attractive. © 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim
    corecore