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Abstract 

Varying formulations in the glass system of 40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 

(where 0≤x≤22 and y=0 or 1) were prepared via melt-quenching. The structure of the glasses 

was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), micro Raman and 

solid-state nuclear magnetic resonance (NMR) spectroscopies. The thermal properties and 

the activation energy of crystallisation (Ec) were measured using thermal analysis and the 

Kissinger equation, respectively. The glass forming ability of the formulations investigated 

was seen to decrease with reducing MgO content down to 8 mol% and the glass stability 

region also decreased from 106 oC to 90 oC with decreasing MgO content. The activation 

energy of crystallisation (Ec) values also decreased from 248 (for 24 mol% MgO glass) to 229 
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kJ/mol (for the 8 mol% MgO content) with the replacement of MgO by CaO for glasses with 

no TiO2. The formulations containing less than 8 mol% MgO without TiO2 showed a strong 

tendency towards crystallisation. However, the addition of 1 mol% TiO2 in place of Na2O for 

these glasses with less than 8 mol% MgO content, inhibited their crystallisation tendency. 

Glasses containing 8 mol% MgO with 1 mol% TiO2 revealed a 12 oC higher glass transition 

temperature, a 14 oC increase in glass stability against crystallisation and a 38 kJ/mol increase 

in Ec in comparison to their non TiO2 containing counterpart. NMR spectroscopy revealed that 

all of the formulations contained almost equal percentages of Q1 and Q2 species. However, 

FTIR and Raman spectroscopies showed that the local structure of the glasses had been 

altered with addition of 1 mol% TiO2, which acted as a network modifier, impeding 

crystallisation by increasing the cross-linking between phosphate chains and consequently 

leading to increased Ec as well as their glass forming ability. 

 

Introduction 

Phosphate-based glasses (PBGs) have attracted a lot of interest in the field of biomaterials 

and tissue engineering due to their controllable degradation profiles and chemical similarity 

with the inorganic component of natural bone 1-3. PBGs with various modifying oxide  such as 

CuO 4, ZnO 5, Ag2O 6, Fe2O3 
7, TiO2 

8, SrO 9, have been extensively investigated to adjust for 

biomedical and tissue engineering applications 10. For example, the addition of CaO has been 

reported to improve the bioactivity of these glasses and to enhance haemostatic activity 11-

14. However, the glass structure could be disrupted due to the addition or replacement of 

modifying oxide and consequently, the glass forming ability could be decreased 15. 
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The structure of PBGs is composed of PO4
3- tetrahedral units. The tetrahedra can be described 

in terms of Qn terminology, where n represents the number of bridging oxygens (BOs) per 

PO4
3- tetrahedron. In vitreous P2O5 each tetrahedral unit is connected with three others via 

bridging oxygen and the fourth oxygen of each tetrahedral unit is known as a non-bridging 

oxygen (NBOs) 16. Phosphate tetrahedra with three bridging oxygens (BOs) are referred to as 

Q3 species where the fraction O/P = 2.5. Addition of modifying oxides, such as CaO, disrupts 

the phosphate network and increases the O/P ratio. As the O/P ratio increases from 2.5 to 4 

(2.5, 3, 3.5, 4) the phosphate structural group passes from Q3 to Q0 (Q3→Q2→Q1→Q0), where 

Q0 represents isolated PO4
3- units with four NBOs 17. PBGs with smaller phosphate units can 

crystallise easily as compared to glasses with longer phosphate chains as the entangled chains 

of the long chain phosphate glasses increase the viscosity of melt and impede crystallisation 

18.  

However, vitreous P2O5 (i.e.  with completely Q3 structural unit) is chemically unstable, 

therefore modifying oxides have been added to make the PBG glass stable via the formation 

of P-O-M bonds (where M is a metal cation) 19. The chemical durability and glass-forming 

ability of phosphate-based glasses has been reported to be significantly improved with the 

addition of TiO2 
20,21. Titanium can present in the glass as Ti4+ or Ti3+, with the oxidation state 

of Ti in the glass dependent on the melting conditions (oxidizing or reducing) and the total 

amount of titanium present in the glass 22. Ti4+ has also been reported to act as a glass former, 

whilst Ti3+ serves as a glass modifier 22. In addition, titanium containing glasses have shown 

good cell viability, attachment and proliferation 8,23-26. Abou Neel et al. studied the effect of 

TiO2 on the cytocompatibility of P50Ca30Na20Ti0 glasses and reported that the addition of 5 

to 15 mol% TiO2 in place of Na2O was effective in increasing cell viability 8. It has also been 
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reported that TiO2 in phosphate glasses could help to induce calcium phosphate surface 

nucleation and thus improve the bioactivity of glasses 27. However, TiO2 is also act as a 

nucleating agent and favors devitrification at local level for the silicate glasses [1-4]. 

Danewalia et. al. studied the incorporation of TiO2 in 45SiO2–25CaO– 10Na2O–5P2O5–

10MnO2–5Fe2O3 glass ceramic system on structural, magnetic and bioactive properties [1]. 

They found that the more ordered local structure of the glasses with increasing TiO2 content 

from 1.25 to 5 wt% [1]. 

Crystallisation kinetics is an important topic for glass formation and glass-ceramic synthesis 

28. The glass forming ability of a composition can be assessed by its reluctance to undergo 

crystallisation 28. The crystallisation process is usually described by the activation energy of 

crystallisation (Ec) and the Johnson-Mehl-Avrami (JMA) exponent (n). The Ec gives an 

indication of the temperature dependence of the crystallisation process, whereas n gives an 

idea on the crystal growth dimensionality 29. The activation energy of crystallisation can be 

calculated using the Kissinger equation 30, amongst others. The JMA exponent can be 

calculated using the Augis and Bennett equation 31. It is also worth noting that the 

crystallisation parameters can often be influenced by the size of glass particles 32,33. The 

resistance of a glass against crystallisation can also be quantified in terms of the glass stability, 

which is the temperature difference between the glass transition (Tg) and the onset of 

crystallisation (Tx) 34. 

The aim of this work was to investigate the effect of decreasing MgO content with CaO in the 

quaternary glass formulation of 40P2O5-(24-x)MgO-(16+x)CaO-20Na2O. However, reducing 

the MgO content to lower than 8mol% revealed that the glasses crystallised. As such, a further 

series of glasses were then evaluated incorporating 1 mol% TiO2 (in the series 40P2O5-(8-
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x)MgO-(32+x)CaO-19Na2O-TiO2), to investigate if the crystallisation could be arrested. 

Thermal, physical (i.e. density) and structural analyses were conducted via simultaneous 

thermal analysis (SDT), the Archimedes method and X-ray diffraction (XRD), Fourier transform 

infrared (FTIR), Raman and nuclear magnetic resonance (NMR) spectroscopies, respectively.  

Materials and Methodology 

Glass Preparation 

Varying formulations in the glass system 40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 

(where 0≤x≤22 and y=0 or 1) were prepared using sodium dihydrogen phosphate (NaH2PO4), 

calcium hydrogen phosphate (CaHPO4), magnesium hydrogen phosphate trihydrate 

(MgHPO4.3H2O), phosphorous pentoxide (P2O5) and titanium dioxide (TiO2) as starting 

materials (Sigma Aldrich, UK). The required amounts of precursors were weighed, mixed and 

transferred to a platinum rhodium alloy crucible (Birmingham Metal Company, U.K.) which 

was then placed into a furnace at 350 oC for 0.5 hours to remove H2O. The mixture was then 

transferred to another furnace pre-heated to between 1150-1200 oC for 1.5-2 hours 

depending on the glass composition, as shown in Table 1. The resulting molten glass was 

poured onto a steel plate and left to cool to room temperature.  

X-ray diffraction analysis 

X-ray diffraction studies were conducted to confirm the amorphous nature of each glass 

formulation using a Bruker D8 Advanced diffractometer. The instrument was operated at 

room temperature and ambient atmosphere with Ni-filtered CuKα radiation (λ=0.15418 nm), 

generated at 40 kV and 35 mA. Scans were performed with a 5˚ glancing angle, a step size of 

0.04° and a step time of 8 seconds over an angular range 2θ from 15° to 50°.  
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Density measurement 

The density of the glasses was determined in accordance with the standard ASTMD-792 using 

the Archimedes method. The measurement was carried out at room temperature using 

industrial methylated spirit (IMS) as the immersion fluid. Bubble free glass rods (9×20 mm) 

were used for the experiment, which was repeated three times for each glass formulation. 

The density of glasses was calculated using equation 1:  

𝜌 =
A

A−B
×  𝜌𝑜………..(1) 

Where A and B are the weight of the glass rods in air and in IMS respectively, and ρo is the 

density of IMS at the given temperature. 

The compactness of a glass structure can be measured by the oxygen density of that glass 35-

37.The oxygen density considers the effect of oxygen and neglects the effect of other 

components in the glass 35 and was calculated by dividing the mass of oxygen atoms in one 

mole of glass, mo using equation 2: 

𝑚𝑜  = 𝑀𝑜 × (5𝑥𝑃2𝑂5
 +  𝑥𝑀𝑔𝑂  +  𝑥𝐶𝑎𝑂  + 2𝑥𝑁𝑎2𝑂  +  2𝑥𝑇𝑖𝑂2

)..……….(2) 

(where, Mo is the atomic weight of oxygen and x is the mole fraction of oxide) by the molar 

volume of the glass, Vm , which was calculated by dividing the mass of 1 mole of glass by 

experimental density of the glass, ρ (as shown in equation 3). 

𝑉𝑚  =
𝑥𝑃2𝑂5

𝑀𝑃2𝑂5
+ 𝑥𝑀𝑔𝑂𝑀𝑀𝑔𝑂 + 𝑥𝐶𝑎𝑂𝑀𝐶𝑎𝑂 +𝑥𝑁𝑎2𝑂𝑀𝑁𝑎2𝑂 + 𝑥𝑇𝑖𝑂2

𝑀𝑇𝑖𝑂2

 𝜌
 ..………(3) 

Thermal analysis 

The thermal properties of the phosphate-based glasses (PBGs), specifically the glass transition 

(Tg) (measured at the midpoint), onset of crystallisation (Tx), crystallisation peak (Tc), melting 
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peak (Tm) temperatures and glass stability against crystallisation, were characterised using a 

simultaneous thermal analysis instrument (SDT, TA Instruments SDT Q600, USA). 

Approximately 30 mg of glass powder (particle size range between 45-100 µm were used 

which were obtained by crushing the glass using Ball mill and followed by sieving through 

stainless still sieves) was placed into a platinum pan and then heated from room temperature 

to 1100 oC at different heating rates (i.e. 10, 15 and 20 oC min-1 ) under 50 mL min-1 of nitrogen 

gas flow. An empty pan was also analysed in order to determine the baseline which was then 

subtracted from the thermal traces using TA Universal Analysis 2000 software. Triplicate was 

used for this measurements. 

Activation energy of crystallisation 

The activation energy for crystallisation (Ec) associated with the crystallisation peak of the 

glasses was calculated using the Kissinger equation 4 30. 

ln(
𝛽

𝑇𝑐
2) = −

𝐸𝑐

R𝑇𝑐
+ Constant………..(4) 

Where β is the heating rate, Tc is the crystallisation peak temperature measured at the 

different heating rates (i.e. 10, 15 and 20 oC min-1) and R is the gas constant. 

The Johnson-Mehl-Avrami (JMA) exponent (n), provides information on the crystal growth 

dimensionality 29, and can be obtained using the equation proposed by Augis and Bennett 31 

(see equation 5) 

n =
2.5 𝑇𝑐

2

ΔTFWHM
𝐸𝑐
R

 ……………..(5) 

Where n is the JMA exponent, Tc is the crystallisation peak temperature, ΔTFWHM is the full 

width at half maximum of the crystallisation peak, Ec is the activation energy of crystallisation 

and R is the gas constant. 
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Fourier transform infrared (FTIR) spectroscopic analysis 

Infrared spectroscopy was performed using a Bruker Tensor-27 spectrometer (Germany). All 

spectra were analysed using OpusTM software version 5.5. The glass powders (particle size 

range 45-100 µm) were scanned in absorbance mode in the region of 4000 to 550 cm-1 (wave 

numbers) and the spectra were collected with a resolution of 4 cm-1 by averaging 32 scans 

using a standard pike attenuated total reflectance (ATR) cell (Pike technology, UK).  

Micro Raman spectroscopic analysis 

Micro Raman spectroscopy was performed using a Horiba JobinYvonLabRAM HR Raman 

spectrometer equipped with an automated xyz stage (Märzhäuser). Spectra were acquired 

over the range 100-1400 cm
-1

 using a 532 nm laser at 34 mW power, a 100x objective and a 

50 µm confocal pinhole. To simultaneously scan a range of Raman shifts, a 600 lines mm
-1

 

rotatable diffraction grating along a path length of 800 mm was employed. Spectra were 

detected using a Synapse CCD detector (1024 pixels) thermoelectrically cooled to −60 °C. 

Before spectra collection, the instrument was calibrated using the zero-order line and a 

standard Si (100) reference band at 520.7 cm
-1

. The spectral resolution in this configuration is 

better than 1.8 cm
-1

. 

For single point measurements of all glass formulations, spectra were acquired with an 

acquisition time of 30 seconds and 8 accumulations to improve the signal to noise ratio, from 

five random locations and averaged to give a mean spectrum. For M8T1 (as a representative 

of a 1 mol% TiO2 containing glass), a lateral map of the top surface of the glass was obtained 

by acquiring spectra at 2 µm steps within a square 40 x 40 µm (a total of 441 spectra). In this 

configuration, the spatial resolution was ~1 and ~3 µm in the lateral (xy) and axial (z) 

dimensions, respectively. As each individual spectrum was collected for 10 seconds, repeated 
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once in order to automatically remove the spikes due to cosmic rays, the whole map required 

approximately 2.5 hours of acquisition time. The intensity (as height) of the band in the region 

845-940 cm
-1

 (a diagnostic vibrational mode the TiO5 unit) was evaluated within the map using 

univariate analysis within Labspec 6 software. Optical micrographs of the glasses were 

obtained using a 100x objective lens. 

Nuclear magnetic resonance (NMR) spectroscopic analysis 

31P NMR is used to evaluate the structural connectivity of the phosphate glass network 38. 

31P MAS NMR spectra were recorded at room temperature on a Varian Chemagnetics 

Infinityplus spectrometer operating at a Larmor frequency of 121.468 MHz using a 4 mm MAS 

probe spinning at 12.5 kHz. The 31P π/2 pulse duration was 3.0 µs, the spectral width was 100 

kHz and the acquisition time was 10.24 ms. Chemical shifts are quoted relative to 85% H3PO4 

using Na4P2O7.10H2O as an external secondary reference. Prior to acquiring quantitative 31P 

spectra the spin-lattice relaxation time T1 was determined for each sample by saturation 

recovery. Saturation was achieved by 100 31P π/2 pulses spaced by delays of between 5 and 

20 ms with recovery delays of up to 1000 s. Quantitative 31P NMR spectra required relaxation 

delays (5 T1) of the order of between 60 s and 250 s depending on the sample. The resulting 

spectra were deconvoluted into a set of Gaussian lineshapes which were integrated in order 

to quantify the proportions of the different Q environments in the sample. First-order MAS 

sidebands were included in the analysis. Higher-order sidebands contained less than 1 % of 

the spectral intensity and were neglected. 
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Results 

X-ray diffraction analysis 

XRD traces of the glasses are presented in Figure 1. With the exception of M4T0 and M2T0 

formulations, a single broad peak between 20o and 40o (2θ) was observed for all of the glass 

compositions. The absence of any sharp crystalline peak confirmed the amorphous nature of 

these glasses. The amorphous glasses were chosen for further characterisation in this study. 

As M2T0 and M4T0 crystallised during manufacture they were not studied further.  

Density 

Figure 2 shows the density of the glasses. As can be seen, the density decreased from 2745 

to 2725 kgm-3 with decreasing MgO content from 24 to 8 mol% for the glasses that did not 

contain TiO2. However, the titanium contianing glasses showed a higher density in 

comparison to M8T0. 

Oxygen density and molar volume 

Figures 3a and 3b present the oxygen density and molar volume of glasses with no TiO2 and 

with 1 mol% TiO2, respectively. As seen from Figure 3a, the oxygen density decreased from 

1.30 to 1.25 gcm-3, whereas the molar volume increased from 32.05 to 33.21 cm3mol-1, as the 

CaO content increased from 16 to 32 mol% (i.e. the MgO content correspondingly decreased 

from 24 to 8 mol%). For the glasses with 1 mol% TiO2 (see Figure 3b), the oxygen density was 

seen to decrease from 1.26 to 1.24 gcm-3, whereas molar volume was seen to increase from 
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33.1 to 33.5 cm3mol-1, with increasing CaO content from 32 to 38 mol% (or decreasing MgO 

content from 8 to 2 mol%).  

Thermal properties 

From Table 2, it has been observed that the glass transition (Tg), onset of crystallisation (Tx), 

crystallisation peak (Tc), initial melting (Tm) temperatures and the stability (ΔT) of the glasses 

against crystallisation were found to decrease with decreasing MgO content. It is to be noted 

that, the Tg, Tx, Tc and Tm values of some of these formulations (except for the M8T1 glass) 

have been reported previously 39. However, in this investigation those values were utilised to 

calculate the glass stability in order to address their crystallisation behaviour, as presented in 

Table 2. The Tg value was seen to decrease from 448 oC (for M24T0) to 430 oC (for M8T0) with 

decreasing MgO content from 24 to 8 mol%. However, with the addition of 1 mol% of TiO2, 

the M8T1 glass showed a 12 oC higher Tg value than M8T0. For the fixed 1 mol% TiO2 content 

glasses, the Tg value was seen to decrease from 442 oC (for M8T1) to 436 oC (for M2T1) with 

decreasing MgO content from 8 to 2 mol%. Similarly, the Tc was seen to decrease from 571 

oC (for M24T0) to 541 oC (for M2T1).  

Crystallisation behaviour 

As stated earlier, PBGs in the glass system 40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 

(where 0≤x≤22 and y=0 or 1) with MgO content 8 mol% and above 8 mol% were formed 

successfully, as confirmed by XRD analysis. However, further replacement of MgO with CaO 

showed a strong tendency towards crystallisation (i.e. M4T0 and M2T0 glasses, see Figure 1). 

On the other hand, the addition of 1 mol% TiO2 in place of Na2O for glasses with less than 8 

mol% MgO (i.e. M4T1, M2T1) reduced the tendency of the glass to crystallise. Figure 4a and 

4b show 2 mol% MgO containing glasses without and with 1 mol% TiO2 content, respectively.  
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As the crystallisation temperature varied with glass particle sizes (see ESI Figure 1 for M24T0 

as an example), a fixed particle size range of 45-100 µm was used to calculate the activation 

enery of cystallisation for all glass formulations. Figure 5 shows results for the M24T0 glass as 

an example of the effect of different heating rates on the crystallisation temperature. This 

process was repeated three times for each glass formulation. As can be seen, the 

crystallisation peak shifted to higher temperature (from 571 to 587oC) and the peak intensity 

increased with increasing heating rate (from 10 to 20 oCmin-1). In order to calculate the 

activation energy of crystallisation, ln (β/Tc
2) over 1/Tc was plotted for all glass formulations 

(see ESI Figure 2 for M24T0 as an example) and the slope of these lines corresponds to –Ec/R 

(where, R is the gas constant). 

Table 3 provides values of the crystallisation peak temperatures obtained at the different 

heating rates, the activation energy of crystallisation (Ec) and the JMA exponent for the 

glasses. It was found that Ec decreased from 248 to 229 kJmol-1 as the content of MgO 

decreased from 24 to 8 mol% for glasses with no TiO2. However, the M8T1 glass revealed an 

Ec value 38 kJmol-1 higher in comparison to M8T0. For the glasses containing 1 mol% TiO2, the 

Ec was seen to decrease from 267 to 233 kJmol-1 with decreasing MgO content from 8 to 2 

mol%.  

FTIR and Raman spectroscopy 

Figures 6a and 6b show the FTIR and Raman spectra collected from the fingerprint region for 

the glasses investigated. At least five (725, 900, 1000, 1100 and 1250 cm-1) and eight (347, 

500, 546, 700, 900, 1040, 1160 and 1260 cm-1) vibrational modes associated with the 
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phosphate network 40-42 were observed in the FTIR and Raman spectra, respectively, the 

position and proposed assignments of which are presented in ESI Table 1. 

Of note in the IR spectra (Figure 6a), the intensity of the peaks at ca. 900 and 1100 cm-1, 

associated with asymmetric P-O-P stretching vibrations of bridging oxygens in Q2 and Q1 

tetrahedra, respectively 9,42, were seen to increase with decreasing MgO content (from 24 to 

8 mol%) for glasses containing no TiO2. However, the M8T1 glass showed a lower peak 

intensity at the same positions relative to M8T0. Moreover, redshifting of bands from 739 to 

729 cm-1 (νs(P-O-P), Q2), from 899 to 889 cm-1 (νas(P-O-P), Q2) and from 1119 to 1101 cm-1 

(νas(P-O-P), Q1) was observed with decreasing MgO content for the glasses containing no TiO2. 

Interestingly, these same vibrational modes were blueshifted to a higher frequency for M8T1 

relative to M8T0. 

In the Raman spectra (Figure 6b), analogous redshifting of bands, such as those associated 

with the PO2 symmetric stretching of non-bridging oxygen in Q1 (from 1046 to 1042 cm-1) and 

Q2  (from 1161 to 1158 cm-1) units, respectively,43 was noted with decreasing MgO content.  

The position of these bands did not change for the Ti containing glasses. Likewise, the 

characterstic band at ca. 500 cm-1, assigned to the bending vibrations of P-O bonds 43, 

redshifted from 503 to 497 cm-1 (for M24T0 and M8T0, respectively), remaining at 493 cm-1 

for the Ti containing glasses. Furthermore, a distinctive band at 899 cm-1 was observed in the 

Raman spectra of the Ti containing glasses, assigned to the TiO5 (titanyl) unit and a symmetric 

P-O stretch of phosphate interacting with Ti 44. No evidence of a vibrational mode at ca. 640 

cm-1, diagnostic of the Ti-O stretch in TiO6 octahedra, was noted. To explore the relative 

distribution of the TiO5 component (899 cm-1) within the glass, the top surface of M8T1 (as 

representative of the Ti containg glasses) was chemically mapped using Raman spectroscopy 

(Figure 7a). The resultant false colour image indicated that the 1 mol% TiO2 was uniformly 
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distributed throughout the surface of the glasses, with the mean spectrum (Figure 7b) 

extracted from the map (441 spectra) matching well with that previously obtained from 

random, single point measurements.  

NMR spectroscopy 

Figure 8 shows 31P MAS NMR spectra of the glasses. Two peaks were observed within the 

range of - 22.4 to -21.5 and -8.3 to -7.1 ppm. These ranges were assigned to Q2 and Q1 species, 

respectively 45. The spectra showed that the peaks associated with Q2 species shifted slightly 

from -22.44 to -21.75 ppm with substitution of MgO by CaO (from M24T0 to M8T0). ESI Table 

2 provides peak positions and relative proportions of Q1 and Q2 species for the individual 

glasses. The proportion of Q2 species for the glasses without Ti was found to be between 50 

to 51%. No significant variation in the relative proportions was observed between the M8T0 

and M8T1 glasses.  

 

Discussion 

Several researchers have investigated the crystallisation behaviour of different types of 

glasses 35,46-48 and report that crystallisation is strongly affected by the glass composition, 

heating rate and particle size 35,46. In this current study, the effect of decreasing MgO (and 

hence increasing CaO) content and the addition of TiO2 on glass formation ability was 

investigated for glasses in the system 40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 (where 

0≤x≤22 and y=0 or 1), including assessment of the physical, thermal, structural and 

crystallisation properties.  

Density measurements give an indication of the degree of change in the glass structure with 

the variation of glass composition. The decrease in glass density from 2745 kgm-3 (for M24T0) 
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to 2725 kgm-3 (for M8T0) (see Figure 2) with reducing MgO content was attributed to the 

replacement of the higher density element Mg (1.74 gcm-3) with the lower density element 

Ca (1.55 gcm-3). Furthermore, the M8T1 glass showed a higher density than M8T0 which was 

attributed to the lower density element Na (0.97 gcm-3) being replaced by the higher density 

element Ti (4.5 gcm-3). A similar study conducted by Abou Neel et al. found that the density 

increased from 2.58 to 2.68 gcm-3 with the addition of 15 mol% TiO2 into a ternary phosphate 

glass formulation 8. They reported that the increase in density was due to the replacement of 

low density Na with higher density element Ti 8. 

As seen from Figure 3, the oxygen density decreased, whilst the molar volume increased, with 

the substitution of MgO by CaO in this glass series. This was attributed to the fact that calcium 

has a larger ionic radius than magnesium, and as a result has lower polarising power due to 

its small charge to size ratio and subsequently lower attractive force to non-bridging oxygens 

(NBO) 35. A similar finding was suggested by Al-noaman et al. who reported that the oxygen 

density increased from around 1.19 to 1.23 gcm-3 with the addition of 20 mol% MgO in place 

of CaO 35. The compactness of the glasses in this study decreased with decreasing MgO 

content for the formulations containing no TiO2. However, with the addition of 1 mol% TiO2 

the compactness of the structure increased as evidenced when compared to the oxygen 

density of the glass without TiO2 (i.e. M8T0).  

The thermal properties of phosphate-based glasses (PBGs) are strongly dependent on their 

structural features, such as chain length, cross-linking density and bonding strength. The 

decrease in Tg, Tx, Tc and initial melting temperature with decreasing MgO content for glasses 

that did not contain TiO2 (see Table 2) was also attributed to the same reasons as discussed 

above for the oxygen density, i.e. due to the replacement of Mg-O bonds with Ca-O bonds. 
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The chemical bond strength of Mg-O is known to be higher than Ca-O, as Mg2+ has a smaller 

ionic radius (0.65 Å) compared to Ca2+ (0.99 Å) 49. Furthermore, the smaller size of Mg results 

in a high charge to size ratio and thus exhibits higher electronegativity, which creates higher 

attractive forces to non-bridging oxygens (NBO) as compared to Ca 35. Therefore, it was 

anticipated that Mg formed a strong cross-linking with phosphate chains, compare to Ca 50, 

which also correlated with a high compact structure for higher Mg content glasses as 

indicated by the oxygen density data.  

The addition of 1 mol% TiO2 was found to have increased Tg of M8T1, M4T1 and M2T1 in 

comparison to glass code M8T0. This increase in Tg was attributed to the replacement of Na-

O bonds with Ti-O as Ti4+ ions have a higher field strength and greater bond strength than Na+ 

8,15. A similar effect on Tg values for replacing Na+ with Ti4+ was also observed in the 50P2O5-

30CaO-(20-x)Na2O-xTiO2 glass system investigated by Abou Neel et al. where the Tg values 

increased from 383 to 538 oC with addition of 15 mol% TiO2 
8. They suggested that the increase 

in Tg with addition of TiO2 was due to the smaller ionic radius of Ti4+ (0.56 Å) compared to Na+ 

(0.97 Å), where the size of ions (i.e. ionic radius) introduced into the glass network is a key 

factor in controlling their chemical durability and thermal stability. As TiO2 has a smaller ionic 

radius and higher electrical charge than Na+ it most likely generated stronger cross-linking 

between the phosphate chains via creating Ti–O–P links 51-53. This finding also correlated with 

the compactness of the glass structure as the oxygen density increased with the addition of 

TiO2. 

The glass formation tendency of the formulations was seen to decrease with the substitution 

of MgO with CaO as the glass stability against crystallisation decreased from 106 oC (for 

M24T0) to 90 oC (for M8T0) (see Table 2). Formulations containing less than 8 mol% MgO in 
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the series investigated showed a strong tendency towards crystallisation (see Figure 4a). This 

was suggested to be due to the lower field strength of Ca2+(0.33) as compared to Mg2+ (0.45) 

54. According to Dietzel, MgO can behave as an intermediate oxide 55 and in its intermediate 

state, can potentially act as a network former as well as a cross-linker between the phosphate 

chains 50,56,57. On the other hand, Ca acts only as a network modifier and depolymerises the 

phosphate chains, which consequently increases the mobility of the phosphate structural 

groups in the melt 34. As a result, the components can arrange themselves into an ordered 

crystalline structure more easily 34. Therefore, for this glass series, a decrease in MgO content 

lead to an increase in crystallisation tendency. It has also been reported that the addition of 

TiO2 to PBGs increased the glass stability by the formation of cross-links between the 

phosphate chains 21,52,53,58. A number of studies have also suggested that titanium can enter 

the phosphate glass network as Ti4+ ions and thus behave as a glass network former 21,22. 

Therefore, the crystallisation tendency may have been inhibited by the addition of 1 mol% 

TiO2 (see Figure 4b). 

Crystallisation is generally described by the activation energy for crystallisation (Ec) and the 

Johnson-Mehl-Avrami (JMA) exponent 47. As seen from Figure 5, the crystallisation 

temperature and peak height increased with increasing heating rate. This could be attributed 

to the fact that the heat flow to the samples increased with increasing heating rate 35. A similar 

result of increasing crystallisation peak intensity was also observed by Al-noaman et al. for 

silicate glasses, which increased from around 1 to 45 mcal/sec with increasing heating rate 

from 5 to 20 oCmin-1 35. This result was also in good agreement with the results found by 

Clupper and Hench 59 and Bretcanu et al. 60. Massera et al. also studied the effect of heating 

rate on the crystallisation peak intensity for 50P2O5-40CaO-SrO-10Na2O glasses with particle 

sizes in the range 300-500 µm 47. They reported that the crystallisation peak intensity 
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increased from 1.1 to 1.4 Wg-1 with increasing heating rate from 5 to 20 oCmin-1 47. The 

changes in the width (broad vs narrow) of the crystallisation peaks are usually indicative of 

changes in the crystallisation mechanism 46. The intensity of crystallisation peaks are often 

used to determine whether crystallisation has occurred at the surface or within the bulk of 

the materials 33,61. A broad crystallisation peak can be associated with surface crystallisation 

whereas a sharp peak is associated with bulk crystallisation 46.  

The decrease in Ec with decreasing MgO content for glasses containing no Ti content and the 

higher Ec for M8T1 (compared to M8T0) was attributed to the effect of field strength has been 

discussed above for oxygen density and thermal analysis. This result also correlated well with 

the glass stability (ΔT) data (shown in Table 2). Brauer et al. investigated the effect of TiO2 on 

crystallisation behaviour in the P2O5-CaO-MgO-Na2O glass system and reported that the 

activation energy increased from 270 to 360 kJmol-1 with increasing TiO2 content from 0 to 5 

mol% due to the formation of higher cross-links between phosphate units 15. The variation of 

Ec as a function of glass composition was in good agreement with the change in the 

crystallisation behaviour found by SDT analysis. Types of crystal growth must be determined 

for understanding the nucleation and growth kinetics of the first crystal that forms during 

heat treatment. During crystallisation of the glasses, the parameter, n, of the JMA model 

provides some insight into the crystal growth dimensionality 29. The JMA exponent was 

calculated by the equation proposed by Augis and Benett [Eq 5] and shown in Table 3. Usually, 

n~1 is associated with surface crystallisation, n=2 with 2D and n=3 with 3D bulk crystallisation, 

with n>3 indicative of complex crystallisation behaviour62.  

FTIR and Raman spectra for the glasses showed small variations in terms of intensities and 

positions of peaks as a function of composition. These results were expected as the 
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substitution of MgO by CaO did not change the O/P ratio and hence no variation in Q species 

was expected. Similarly, no significant change in the relative proportion of Q1 and Q2 species 

was found from the 31P NMR analysis and all of the glass formulations contained an almost 

equal percentage of Q1 and Q2. The small variations observed were within the error from the 

fitting. The redshift in the position of the symmetric and asymmetric P-O-P stretching modes 

observed in the FTIR spectra was consistent with the replacement of higher field strength 

Mg2+ by lower field strength Ca2+ and the replacement of lower field strength Na+ ions by 

higher field strength Ti4+ ions 63, leading to increases in the P-O-P bond angle as a consequence 

of either longer phosphate chain lengths or the presence of larger cationic size 64. A similar 

study was done by Abou Neel et al. who found that the asymmetric νas(P-O-P) stretching 

modes shifted to higher frequency and the peak intensity decreased with increasing SrO 

content due to the replacement of Na+ ions by higher field strength of Sr2+ ions 9. The increase 

in the intensity of the asymmetric νas(P-O-P) stretching modes with reducing MgO for the 

glasses containing no TiO2 could be due to the decrease in phosphate-cation bonding 

interaction as Mg2+ has higher field strength than Ca2+ 9. On the other hand, the Ti containing 

glasses showed broader peaks as compared to M8T0, which may have been due to Ti4+ 

increasing the phosphate-cation bonding interactions compared to Na+ 9. The bands at around 

1000 and 1100 cm-1 were assigned to symmetric νs(PO3)
2-

and asymmetric  νas(PO3)
2-

modes, 

respectively which are associated with Q1 species 16,65. The intensity of the absorption bands 

for asymmetric stretching modes, νas(PO3)2- of the chain terminating groups of the glasses 

increased with decreasing MgO content down to 8 mol%, which was an indication for 

decreasing the cross-links between the glass network and thereby reducing the rigidity of the 

network 41. However, the addition of 1 mol% TiO2 (i.e. M8T1) reduced the intensity (compared 

to M8T0) of the absorption bands for the asymmetric stretching modes, νas(PO3)2- significantly. 
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Similarly, this could be attributed to the increase in degree of polymerisation or creating more 

cross-linking between the glass network as Ti  can act as a network former or network modifier 

41.  

From the mean Raman spectra, obtained by averaging point spectra collected from five 

random locations, a diagnostic peak for Ti containing glasses was observed at 899 cm-1, 

associated with a Ti-O stretching vibration in TiO5 (titanyl) units and confirming the role of 

TiO2 as a network modifier 44. Although subtle differences in the intensity of the red 

colouration were noted in the false colour spectroscopic map, associated with differences in 

surface topography, TiO5 was found to be within every pixel of the map, indicating its uniform 

dispersion throughout the surface of the glass. No evidence for the presence of TiO6 (titanate) 

units, which typically are observed at around 640 cm-1 in the Raman spectrum, and known to 

act as a network former 44, were found for the Ti containing glasses investigated.  

The addition of 1 mol% TiO2 to the phosphate glass network (in the glass series investigated) 

was shown to be sufficient to increase cross-linking between the phosphate chains, and was 

sufficient to reduce the crystallisation tendency of the lower Mg containing glasses in the 

glass system 40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 (where 0≤x≤22 and y=0 or 1). 

 

Conclusions 

The glass forming ability for the composition with the replacement of MgO by CaO in 40P2O5-

(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 (where 0≤x≤22 and y=0 or 1 glass system was 

investigated. The glass composition containing minimum 8 mol% MgO with no TiO2 formed 

fully amorphous glass. Further reducing the MgO  (below 8 mol%) without TiO2 in the above 
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glass series showed strong tendency towards crystallisation. Interestingly, only 1 mol% TiO2 

inhibited the crystallisation for the lower MgO containing (M4T0, M2T0) glasses. The role of 

TiO2 in the glass series investigated as a network modifier rather than network former. 
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Figure 1: X-ray diffraction patterns for glasses in the system 40P2O5-(24-x)MgO-(16+x)CaO-

(20-y)Na2O- yTiO2 (where 0≤x≤22 and y=0 or 1).  

Figure 2: Density of different glass formulations measured using the Archimedes method at 

room temperature. 
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Figure 3: Variaion of molar volume (M.V) and oxygen density (O.D) as a function of CaO 

content: a) with no TiO2 and b) with 1 mol% TiO2 present. 

Figure 4: Images of 2 mol% MgO containing glass after casting to room temperature with a) 

no TiO2 and b) 1 mol% TiO2 content present. 

Figure 5 : Variaion of the crystallisation peak as a function of different heating rates (10, 15 

and 20 oCmin-1) for M24T0 glass (particle size 45-100 µm). 

Figure 6: a) FTIR spectra and b) mean Raman spectra (N=5) for the glasses in the system of 

40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 (where 0≤x≤22 and y=0 or 1). Spectra were 

averaged from those collected at five different, random locations on the top surface of the 

glass, with minimal spectral variation indicating a high degree of homogeneity. 

Figure 7: a) (i) Optical image, (ii) Raman spectroscopic map overlaid on optical image and (ii) 

Raman spectroscopic map, including intensity scale bar and b) the mean Raman spectrum 

extracted from all spectra collected within the mapped area for M8T1 glass. 

Figure 8: 31PNMR spectra for glasses in the system 40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-

yTiO2 (where 0≤x≤22 and y=0 or 1). 
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ESI Figure 1 : Variaion of the crystallisation peak as a function of different particle sizes (45-

100, 125-200 and 350-500 µm) at 20 oCmin-1 heating rate for M24T0 glass. 

ESI Figure 2: The Plot of ln (β/TC
2) vs 1/TC for M24T0 glass (n=3). 
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Figure 1: X-ray diffraction patterns for glasses in the system 40P2O5-(24-x)MgO-(16+x)CaO-

(20-y)Na2O- yTiO2 (where 0≤x≤22 and y=0 or 1). Crystalline phase for M4T0 and M2T0 was 

indexed with alpha-calcium pyrophosphate (α- Ca2P2O7) (ICDD No. 00-009-0345). 
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Figure 2: Density of different glass formulations measured using the Archimedes method at 

room temperature. 
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Figure 3: Variation of molar volume (M.V) and oxygen density (O.D) as a function of CaO 

content: a) with no TiO2 and b) with 1 mol% TiO2 present. 
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Figure 4: Images of 2 mol% MgO containing glass after casting to room temperature with a) 

no TiO2 and b) 1 mol% TiO2 content present. 

 

Figure 5 : Variation of the crystallisation peak as a function of different heating rates (10, 15 

and 20 oCmin-1) for M24T0 glass (particle size 45-100 µm). 
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Figure 6: a) FTIR spectra and b) mean Raman spectra (N=5) for the glasses in the system of 

40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-yTiO2 (where 0≤x≤22 and y=0 or 1). Spectra were 

averaged from those collected at five different, random locations on the top surface of the 

glass, with minimal spectral variation indicating a high degree of homogeneity. 
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Figure 7: a) (i) Optical image, (ii) Raman spectroscopic map overlaid on optical image and (ii) 

Raman spectroscopic map, including intensity scale bar and b) the mean Raman spectrum 

extracted from all spectra collected within the mapped area for M8T1 glass. 
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Figure 8: 31PNMR spectra for glasses in the system 40P2O5-(24-x)MgO-(16+x)CaO-(20-y)Na2O-

yTiO2 (where 0≤x≤22 and y=0 or 1). 

 

 

 

 

 

 

 

 

 


