96 research outputs found

    An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres

    Get PDF
    We examined, over a wide range of temperatures (10–35°C), the isometric tension and tension during ramp shortening at different velocities (0.2–4 L0/s) in tetanized intact fibre bundles from a rat fast (flexor hallucis brevis) muscle; fibre length (L0) was 2.2 mm and sarcomere length ~2.5 μm. During a ramp shortening, the tension change showed an initial inflection of small amplitude (P1), followed by a larger exponential decline towards an approximate steady level; the tension continued to decline slowly afterwards and the approximate steady tension at a given velocity was estimated as the tension (P2) at the point of intersection between two linear slopes, as previously described (Roots et al. 2007). At a given temperature, the tension P2 declined to a lower level and at a faster rate (from an exponential curve fit) as the shortening velocity was increased; the temperature sensitivity of the rate of tension decline during ramp shortening at different velocities was low (Q10 0.9–1.5). The isometric tension and the P2 tension at a given shortening velocity increased with warming so that the relation between tension and (reciprocal) temperature was sigmoidal in both. In isometric muscle, the temperature T0.5 for half-maximal tension was ~10°C, activation enthalpy change (∆H) was ~100 kJ mol−1 and entropy change (∆S) ~350 J mol−1 K−1. In shortening, these were increased with increase of velocity so that at a shortening velocity (~4 L0/s) producing maximal power at 35°C, T0.5 was ~28°C, ∆H was ~200 kJ mol−1 and ∆S ~ 700 J mol−1 K−1; the same trends were seen in the tension data from isotonic release experiments on intact muscle and in ramp shortening experiments on maximally Ca-activated skinned fibres. In general, our findings show that the sigmoidal relation between force and temperature can be extended from isometric to shortening muscle; the implications of the findings are discussed in relation to the crossbridge cycle. The data indicate that the endothermic, entropy driven process that underlies crossbridge force generation in isometric muscle (Zhao and Kawai 1994; Davis, 1998) is even more pronounced in shortening muscle, i.e. when doing external work

    A myosin II nanomachine mimicking the striated muscle

    Get PDF
    The contraction of striated muscle (skeletal and cardiac muscle) is generated by ATP-dependent interactions between the molecular motor myosin II and the actin filament. The myosin motors are mechanically coupled along the thick filament in a geometry not achievable by single-molecule experiments. Here we show that a synthetic one-dimensional nanomachine, comprising fewer than ten myosin II dimers purified from rabbit psoas, performs isometric and isotonic contractions at 2 mM ATP, delivering a maximum power of 5 aW. The results are explained with a kinetic model fitted to the performance of mammalian skeletal muscle, showing that the condition for the motor coordination that maximises the efficiency in striated muscle is a minimum of 32 myosin heads sharing a common mechanical ground. The nanomachine offers a powerful tool for investigating muscle contractile-protein physiology, pathology and pharmacology without the potentially disturbing effects of the cytoskeletal-and regulatory-protein environment

    Effect of phosphate and temperature on force exerted by white muscle fibres from dogfish.

    Get PDF
    Effects of Pi (inorganic phosphate) are relevant to the in vivo function of muscle because Pi is one of the products of ATP hydrolysis by actomyosin and by the sarcoplasmic reticulum Ca pump. We have measured the Pi sensitivity of force produced by permeabilized muscle fibres from dogfish (Scyliorhinus canicula) and rabbit. The activation conditions for dogfish fibres were crucial: fibres activated from the relaxed state at 5, 12, and 20°C were sensitive to Pi, whereas fibres activated from rigor at 12°C were insensitive to Pi in the range 5-25 mmol l. Rabbit fibres activated from rigor were sensitive to Pi. Pi sensitivity of force produced by dogfish fibres activated from the relaxed state was greater below normal body temperature (12°C for dogfish) in agreement with what is known for other species. The force-temperature relationship for dogfish fibres (intact and permeabilized fibres activated from relaxed) showed that at 12°C, normal body temperature, the force was near to its maximum value

    The Viscoelastic Properties of Passive Eye Muscle in Primates. II: Testing the Quasi-Linear Theory

    Get PDF
    We have extensively investigated the mechanical properties of passive eye muscles, in vivo, in anesthetized and paralyzed monkeys. The complexity inherent in rheological measurements makes it desirable to present the results in terms of a mathematical model. Because Fung's quasi-linear viscoelastic (QLV) model has been particularly successful in capturing the viscoelastic properties of passive biological tissues, here we analyze this dataset within the framework of Fung's theory

    Crossbridge mechanism(s) examined by temperature perturbation studies on muscle

    No full text
    corecore