13 research outputs found

    Human RAD52 exhibits two modes of self-association

    No full text
    The human RAD52 protein plays an important role in the earliest stages of chromosomal double-strand break repair via the homologous recombination pathway. Individual subunits of RAD52 self-associate into rings that can then form higher order complexes. RAD52 binds to double-strand DNA ends, and recent studies suggest that the higher order self-association of the rings promotes DNA end-joining. Earlier studies defined the self-association domain of RAD52 to a unique region in the N-terminal half of the protein. Here we show that there are in fact two experimentally separable self-association domains in RAD52. The N-terminal self-association domain mediates the assembly of monomers into rings, and the previously unidentified domain in the C-terminal half of the protein mediates higher order self-association of the rings

    Architecture of the human mitochondrial iron-sulfur cluster assembly machinery

    No full text
    Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42-210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42-210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42-210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42-210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42-210 to ISCU

    Fetal glycosylation defect due to ALG3 and GOG5 variants detected via amniocentesis : complex glycosylation defect with embryonic lethal phenotype

    No full text
    Introduction Congenital disorders of glycosylation (CDG) are inborn errors of glycan metabolism with high clinical variability. Only a few antenatal cases have been described with CDG. Due to a lack of reliable biomarker, prenatal CDG diagnostics relies primarily on molecular studies. In the presence of variants of uncertain significance prenatal glycosylation studies are very challenging. Case report A consanguineous couple had a history of second-trimester fetal demise with tetralogy of Fallot and skeletal dysplasia. In the consecutive pregnancy, the second trimester ultrasonography showed skeletal dysplasia, vermian hypoplasia, congenital heart defects, omphalocele and dysmorphic features. Prenatal chromosomal microarray revealed a large region of loss of heterozygosity. Demise occurred at 30 weeks. Fetal whole exome sequencing showed a novel homozygous likely pathogenic variant in ALG3 and a variant of uncertain significance in COG5. Methods Western blot was used to quantify ALG3, COG5, COG6, and the glycosylation markers ICAM-1 and LAMP2. RT-qPCR was used for ALG3 and COG5 expression in cultured amniocytes and compared to age matched controls. Results ALG3 and COG5 mRNA levels were normal. ICAM-1, LAMP2, ALG3 and COG5 levels were decreased in cultured amniocytes, suggesting the possible involvement of both genes in the complex phenotype. Conclusion This is the first case of successful use of glycosylated biomarkers in amniocytes, providing further options of functional antenatal testing in CDG

    Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: The Sub-Complex Formed by the Iron Donor, Yfh1, and the Scaffold, Isu1.

    No full text
    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1, and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24 ·: [Isu1]24. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ~17 Å. In addition, via chemical cross-linking, limited proteolysis and mass spectrometry we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24 ·: [Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly

    Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG

    No full text
    Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG

    Expanding the clinical and metabolic phenotype of DPM2 deficient congenital disorders of glycosylation.

    No full text
    Pathogenic alterations in the DPM2 gene have been previously described in patients with hypotonia, progressive muscle weakness, absent psychomotor development, intractable seizures, and early death. We identified biallelic DPM2 variants in a 23-year-old male with truncal hypotonia, hypertonicity, congenital heart defects, intellectual disability, and generalized muscle wasting. His clinical presentation was much less severe than that of the three previously described patients. This is the second report on this ultra-rare disorder. Here we review the characteristics of previously reported individuals with a defect in the DPM complex while expanding the clinical phenotype of DPM2-Congenital Disorders of Glycosylation. In addition, we offer further insights into the pathomechanism of DPM2-CDG disorder by introducing glycomics and lipidomics analysis.status: Published onlin

    Sorbitol is a severity biomarker for PMM2-CDG with therapeutic implications

    No full text
    OBJECTIVE: Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS: We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS: PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts’ glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION: Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG
    corecore