660 research outputs found

    A First-Year Research Experience: The Freshman Project in Physics at Loyola University Chicago

    Get PDF
    Undergraduate research has become an essential mode of engaging and retaining students in physics. At Loyola University Chicago, first-year physics students have been participating in the Freshman Projects program for over twenty years, which has coincided with a period of significant growth for our department. In this paper, we describe how the Freshman Projects program has played an important role in advancing undergraduate research at Loyola and the profound impact it has made on our program. We conclude with suggestions for adoption of similar programs at other institutions

    Divergent mathematical treatments in utility theory

    Get PDF
    In this paper I study how divergent mathematical treatments affect mathematical modelling, with a special focus on utility theory. In particular I examine recent work on the ranking of information states and the discounting of future utilities, in order to show how, by replacing the standard analytical treatment of the models involved with one based on the framework of Nonstandard Analysis, diametrically opposite results are obtained. In both cases, the choice between the standard and nonstandard treatment amounts to a selection of set-theoretical parameters that cannot be made on purely empirical grounds. The analysis of this phenomenon gives rise to a simple logical account of the relativity of impossibility theorems in economic theory, which concludes the paper

    User's manual for the BROOM decision support system.

    Full text link
    Abstract Not Provide

    Policy Feedback and the Politics of the Affordable Care Act

    Get PDF
    There is a large body of literature devoted to how “policies create politics” and how feedback effects from existing policy legacies shape potential reforms in a particular area. Although much of this literature focuses on self‐reinforcing feedback effects that increase support for existing policies over time, Kent Weaver and his colleagues have recently drawn our attention to self‐undermining effects that can gradually weaken support for such policies. The following contribution explores both self‐reinforcing and self‐undermining policy feedback in relationship to the Affordable Care Act, the most important health‐care reform enacted in the United States since the mid‐1960s. More specifically, the paper draws on the concept of policy feedback to reflect on the political fate of the ACA since its adoption in 2010. We argue that, due in part to its sheer complexity and fragmentation, the ACA generates both self‐reinforcing and self‐undermining feedback effects that, depending of the aspect of the legislation at hand, can either facilitate or impede conservative retrenchment and restructuring. Simultaneously, through a discussion of partisan effects that shape Republican behavior in Congress, we acknowledge the limits of policy feedback in the explanation of policy stability and change

    The First Extrasolar Planet Discovered with a New Generation High Throughput Doppler Instrument

    Get PDF
    We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4±2.063.4\pm2.0 m s−1^{-1} and a period of 4.11 days. The planetary minimum mass (msin⁥im \sin i) is 0.488±0.0150.488\pm0.015 MJM_J.Comment: 42 pages, 11 figures and 5 tables, Accepted for publication in Ap

    SOFIA FEEDBACK Survey: The Pillars of Creation in [C II] and Molecular Lines

    Full text link
    We investigate the physical structure and conditions of photodissociation regions (PDRs) and molecular gas within the Pillars of Creation in the Eagle Nebula using SOFIA FEEDBACK observations of the [C II] 158 micron line. These observations are velocity resolved to 0.5 km s−1^{-1} and are analyzed alongside a collection of complimentary data with similar spatial and spectral resolution: the [O I] 63 micron line, also observed with SOFIA, and rotational lines of CO, HCN, HCO+^{+}, CS, and N2_2H+^{+}. Using the superb spectral resolution of SOFIA, APEX, CARMA, and BIMA, we reveal the relationships between the warm PDR and cool molecular gas layers in context of the Pillars' kinematic structure. We assemble a geometric picture of the Pillars and their surroundings informed by illumination patterns and kinematic relationships and derive physical conditions in the PDRs associated with the Pillars. We estimate an average molecular gas density nH2∌1.3×105n_{{\rm H}_2} \sim 1.3 \times 10^5 cm−3^{-3} and an average atomic gas density nH∌1.8×104n_{\rm H} \sim 1.8 \times 10^4 cm−3^{-3} and infer that the ionized, atomic, and molecular phases are in pressure equilibrium if the atomic gas is magnetically supported. We find pillar masses of 103, 78, 103, and 18 solar masses for P1a, P1b, P2, and P3 respectively, and evaporation times of ∌\sim1-2 Myr. The dense clumps at the tops of the pillars are currently supported by the magnetic field. Our analysis suggests that ambipolar diffusion is rapid and these clumps are likely to collapse within their photoevaporation timescales.Comment: 42 pages, 16 figures. Accepted for publication in The Astronomical Journa
    • 

    corecore