582 research outputs found

    Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice

    Get PDF
    BACKGROUND: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen causing female genital tract infection throughout the world. Reinfection with the same serovar, as well as multiple infections with different serovars, occurs in humans. Using a murine model of female C. trachomatis genital tract infection, we determined if homotypic and/or heterotypic protection against reinfection was induced following infection with human oculogenital strains of C. trachomatis belonging to two serovars (D and H) that have been shown to vary significantly in the course of infection in the murine model. METHODS: Groups of outbred CF-1 mice were reinfected intravaginally with a strain of either serovar D or H, two months after initial infection with these strains. Cellular immune and serologic status, both quantitative and qualitative, was assessed following initial infection, and the course of infection was monitored by culturing vaginal samples collected every 2–7 days following reinfection. RESULTS: Serovar D was both more virulent (longer duration of infection) and immunogenic (higher level of circulating and vaginal IgG and higher incidence of IgA in vaginal secretions) in the mouse genital tract. Although both serovars induced cross-reacting antibodies during the course of primary infection, prior infection with serovar H resulted in only a slight reduction in the median duration of infection against homotypic reinfection (p ~ 0.10), while prior infection with serovar D resulted in significant reduction in the median duration of infection against both homotypic (p < 0.01) and heterotypic reinfection (p < 0.01) when compared to primary infection in age and conditions matched controls. CONCLUSION: Serovar D infection resulted in significant homotypic and heterotypic protection against reinfection, while primary infection with serovar H resulted in only slight homotypic protection. In addition to being the first demonstration of acquired heterotypic immunity between human oculogenital serovars, the differences in the level and extent of this immunity could in part explain the stable difference in serovar prevalence among human isolates

    Targeted analysis of four breeds narrows equine Multiple Congenital Ocular Anomalies locus to 208 kilobases

    Get PDF
    The syndrome Multiple Congenital Ocular Anomalies (MCOA) is the collective name ascribed to heritable congenital eye defects in horses. Individuals homozygous for the disease allele (MCOA phenotype) have a wide range of eye anomalies, while heterozygous horses (Cyst phenotype) predominantly have cysts that originate from the temporal ciliary body, iris, and/or peripheral retina. MCOA syndrome is highly prevalent in the Rocky Mountain Horse but the disease is not limited to this breed. Affected horses most often have a Silver coat color; however, a pleiotropic link between these phenotypes is yet to be proven. Locating and possibly isolating these traits would provide invaluable knowledge to scientists and breeders. This would favor maintenance of a desirable coat color while addressing the health concerns of the affected breeds, and would also provide insight into the genetic basis of the disease. Identical-by-descent mapping was used to narrow the previous 4.6-Mb region to a 264-kb interval for the MCOA locus. One haplotype common to four breeds showed complete association to the disease (Cyst phenotype, n = 246; MCOA phenotype, n = 83). Candidate genes from the interval, SMARCC2 and IKZF4, were screened for polymorphisms and genotyped, and segregation analysis allowed the MCOA syndrome region to be shortened to 208 kb. This interval also harbors PMEL17, the gene causative for Silver coat color. However, by shortening the MCOA locus by a factor of 20, 176 other genes have been unlinked from the disease and only 15 genes remain

    Electroweak baryogenesis

    Get PDF
    Electroweak baryogenesis (EWBG) remains a theoretically attractive and experimentally testable scenario for explaining the cosmic baryon asymmetry. We review recent progress in computations of the baryon asymmetry within this framework and discuss their phenomenological consequences. We pay particular attention to methods for analyzing the electroweak phase transition and calculating CP-violating asymmetries, the development of Standard Model extensions that may provide the necessary ingredients for EWBG, and searches for corresponding signatures at the high energy, intensity, and cosmological frontiers.Comment: 42 pages, 13 figures, invited review for the New Journal of Physics focus issue on 'Origin of Matter

    Reciprocity as a foundation of financial economics

    Get PDF
    This paper argues that the subsistence of the fundamental theorem of contemporary financial mathematics is the ethical concept ‘reciprocity’. The argument is based on identifying an equivalence between the contemporary, and ostensibly ‘value neutral’, Fundamental Theory of Asset Pricing with theories of mathematical probability that emerged in the seventeenth century in the context of the ethical assessment of commercial contracts in a framework of Aristotelian ethics. This observation, the main claim of the paper, is justified on the basis of results from the Ultimatum Game and is analysed within a framework of Pragmatic philosophy. The analysis leads to the explanatory hypothesis that markets are centres of communicative action with reciprocity as a rule of discourse. The purpose of the paper is to reorientate financial economics to emphasise the objectives of cooperation and social cohesion and to this end, we offer specific policy advice

    B Cells Participate in Thymic Negative Selection of Murine Auto-reactive CD4+ T Cells

    Get PDF
    It is well documented that thymic epithelial cells participate in the process of negative selection in the thymus. In recent years it was reported that also dendritic cells enter the thymus and contribute to this process, thus allowing for the depletion of thymocytes that are specific to peripherally expressed self-antigens. Here we report that also B cells may take part in the elimination of auto-reactive thymocytes. Using a unique mouse model we show that B cells induce negative selection of self-reactive thymocytes in a process that leads to the deletion of these cells whereas regulatory T cells are spared. These findings have direct implication in autoimmunity, as expression of a myelin antigen by B cells in the thymus renders the mice resistant to autoimmune inflammation of the CNS

    Mechanisms Underlying Stage-1 TRPL Channel Translocation in Drosophila Photoreceptors

    Get PDF
    Background: TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere), TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels. Methodology/Principal Findings: We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content. Conclusions/Significance: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protei

    The effect of infectious dose on humoral and cellular immune responses in Chlamydophila caviae primary ocular infection

    Get PDF
    Following infection, the balance between protective immunity and immunopathology often depends on the initial infectious load. Several studies have investigated the effect of infectious dose; however, the mechanism by which infectious dose affects disease outcomes and the development of a protective immune response is not known. The aim of this study was to investigate how the infectious dose modulates the local and systemic humoral and the cellular immune responses during primary ocular chlamydial infection in the guinea pig animal model. Guinea pigs were infected by ocular instillation of a Chlamydophila caviae-containing eye solution in the conjunctival sac in three different doses: 1x10(2), 1x10(4), and 1x10(6) inclusion forming units (IFUs). Ocular pathology, chlamydial clearance, local and systemic C. caviae-specific humoral and cellular immune responses were assessed. All inocula of C. caviae significantly enhanced the local production of C. caviae-specific IgA in tears, but only guinea pigs infected with the higher doses showed significant changes in C. caviae-specific IgA levels in vaginal washes and serum. On complete resolution of infection, the low dose of C. caviae did not alter the ratio of CD4(+) and CD8(+) cells within guinea pigs' submandibular lymph node (SMLN) lymphocytes while the higher doses increased the percentages of CD4(+) and CD8(+) cells within the SMLN lymphocytes. A significant negative correlation between pathology intensity and the percentage of CD4(+) and CD8(+) cells within SMLN lymphocyte pool at selected time points post-infection was recorded for both 1x10(4), and 1x10(6) IFU infected guinea pigs. The relevance of the observed dose-dependent differences on the immune response should be further investigated in repeated ocular chlamydial infections

    Microbiology of airway disease in a cohort of patients with Cystic Fibrosis

    Get PDF
    BACKGROUND: Recent reports document an increasing incidence of new Gram-negative pathogens such as Stenotrophomonas maltophilia and Alcaligenes xylosoxidans isolated from patients with Cystic Fibrosis, along with an increase in common Gram-negative pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex. Furthermore, the increase in multidrug-resistance of such organisms makes the therapeutic management of these patients more problematic. Therefore, careful isolation and identification, and accurate studies of susceptibility to antibiotics are critical for predicting the spread of strains, improving therapeutic measures and facilitating our understanding of the epidemiology of emerging pathogens. The first aim of this study was to determine the incidence and the prevalence of colonization by Gram-negative organisms isolated from respiratory samples of Cystic Fibrosis patients in the Regional Referral Cystic Fibrosis Centre of Naples; the second was to evaluate the spectrum of multidrug-resistance of these organisms. METHODS: Patients (n = 300) attending the Regional Cystic Fibrosis Unit were enrolled in this study over 3 years. Sputum was processed for microscopic tests and culture. An automated system, Phoenix (Becton Dickinson, Sparks, Maryland, USA), was used for phenotypic identification of all strains; the API 20 NE identification system (bioMérieux, Marcy l'Etoile, France) was used when the identification with the Phoenix system was inaccurate. A PCR-RFLP method was used to characterize the organisms in the Burkholderia cepacia complex. A chemosusceptibility test on microbroth dilutions (Phoenix) was used. Primary outcomes such as FEV1 were correlate with different pathogens. RESULTS: During the period of study, 40% of patients was infected by Pseudomonas aeruginosa, 7% by Burkholderia cepacia complex, 11% by Stenotrophomonas maltophilia and 7% by Alcaligenes xylosoxidans. Of the strains isolated, 460 were multidrug-resistant. Multiresistant were Pseudomonas aeruginosa and Burkholderia cepacia complex. CONCLUSION: The results confirm previously reported data; in particular, they show an increase the isolation of non-fermentative Gram-negative bacteria in Cystic Fibrosis patients. They also demonstrate increased resistance to antibiotics. Beta-lactams are rarely effective, with exception of ceftazidime, which is the most efficacious agent against multiresistant strains. Aminoglycosides and quinolones are poorly efficacious

    Crystal Structure of a Charge Engineered Human Lysozyme Having Enhanced Bactericidal Activity

    Get PDF
    Human lysozyme is a key component of the innate immune system, and recombinant forms of the enzyme represent promising leads in the search for therapeutic agents able to treat drug-resistant infections. The wild type protein, however, fails to participate effectively in clearance of certain infections due to inherent functional limitations. For example, wild type lysozymes are subject to electrostatic sequestration and inactivation by anionic biopolymers in the infected airway. A charge engineered variant of human lysozyme has recently been shown to possess improved antibacterial activity in the presence of disease associated inhibitory molecules. Here, the 2.04 Å crystal structure of this variant is presented along with an analysis that provides molecular level insights into the origins of the protein's enhanced performance. The charge engineered variant's two mutated amino acids exhibit stabilizing interactions with adjacent native residues, and from a global perspective, the mutations cause no gross structural perturbations or loss of stability. Importantly, the two substitutions dramatically expand the negative electrostatic potential that, in the wild type enzyme, is restricted to a small region near the catalytic residues. The net result is a reduction in the overall strength of the engineered enzyme's electrostatic potential field, and it appears that the specific nature of this remodeled field underlies the variant's reduced susceptibility to inhibition by anionic biopolymers
    corecore