25 research outputs found
GIS Ordination Approach to Model Distribution of Shrub Species in Northern Utah
Anthropogenic and natural disturbances represent a serious threat to natural ecosystems dominated by big sagebrush (Artemisia tridentata). Conservation efforts aim to restore original species composition and prevent the invasion of undesirable species. In order to restore the historic plant communities, we need a clear understanding of how species compositions are distributed along environmental gradients. Species ordination is a process of placing plant species along environmental gradients. This study was conducted in Rich County, Utah, where substantial changes in species composition have been documented in recent years. Field data, literature review, multivariate analyzes, GIS and remote sensing techniques, and expert knowledge were used to define environmental variables and their respective suitability ranges of where shrub species may occur along this area. Ordination and CART- statistical analyzes were used to estimate and predict suitability of shrub species along environmental gradients. GIS procedures were used to spatially predict species distribution. Field data and the Southwest Regional Gap Analysis Project data provided useful information to build the model and 20 percent of field data was withheld to cross-validate the findings. Final results showed that the shrub species distribution in the rangelands of Northern Utah, specifically Rich County, might be driven by precipitation and temperature gradients -influenced greatly by elevation. Slope contributing area, NDVI, and solar radiation were statistically significant factors explaining shrub distribution. To our perception, soil moisture availability might be the most explanatory variable behind these findings. In the model validation, the Kappa coefficient was K = 61.3 percent and the overall model accuracy was 74 percent. The location of species distribution areas, in the final map, can be useful to managers in order to define where resources might be allocated to preserve and restore these native rangeland ecosystems
Predicting the Impact of Climate Change on Cheat Grass (Bromus tectorum) Invasibility for Northern Utah: A GIS and Remote Sensing Approach
Cheat grass (Bromus tectorum) invasibility represents a serious threat to natural ecosystems dominated by sagebrush (Artemisia tridentata). Ecosystem susceptibility to annual grass invasion seems to be driven by specific biophysical conditions. The study was conducted in Rich County, Utah, where cheat grass invasion is not yet an apparent problem, but an imminent invasion might be just a matter of time (temporal scale) to meet spatial variations in environmental conditions (spatial scale). Literature review and expert knowledge were used to define biophysical variables and their respective suitability ranges of where cheat grass takeover might occur. GIS, remote sensing and logistic regression-statistical analyses were employed to estimate probability of cheat grass invasion along environmental gradients. GIS procedures were used to spatially predict areas prone to be invaded by cheat grass under present climatic conditions (model prediction power was 47 percent). Afterwards, simulated climatic change projections (for 2099 year) from the Community Climatic System Model (CCSM-3) were used to model the invasibility risk of cheat grass. The 2099 cheat grass prediction map showed a favorable reduction of around 25 percent in the areas affected by cheat grass invasion, assuming that climate changes occurred as predicted by the CCSM model. The location of highly predisposed areas can be useful to alert managers and define where resources might be allocated to reduce a potential invasion and preserve native rangeland ecosystems
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
The role of networks to overcome large-scale challenges in tomography: The non-clinical tomography users research network
Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives
Magnetic structures and turbulence in SN 1006 revealed with imaging X-ray polarimetry
Young supernova remnants (SNRs) strongly modify surrounding magnetic fields,
which in turn play an essential role in accelerating cosmic rays (CRs). X-ray
polarization measurements probe magnetic field morphology and turbulence at the
immediate acceleration site. We report the X-ray polarization distribution in
the northeastern shell of SN1006 from a 1 Ms observation with the Imaging X-ray
Polarimetry Explorer (IXPE). We found an average polarization degree of
and an average polarization angle of
(measured on the plane of the sky from north to east). The X-ray polarization
angle distribution reveals that the magnetic fields immediately behind the
shock in the northeastern shell of SN 1006 are nearly parallel to the shock
normal or radially distributed, similar to that in the radio observations, and
consistent with the quasi-parallel CR acceleration scenario. The X-ray emission
is marginally more polarized than that in the radio band. The X-ray
polarization degree of SN 1006 is much larger than that in Cas A and Tycho,
together with the relatively tenuous and smooth ambient medium of the remnant,
favoring that CR-induced instabilities set the turbulence in SN 1006 and CR
acceleration is environment-dependent.Comment: 15 pages, 4 Figures, 2 Tables; accepted for publication in The
Astrophysical Journa
The first X-ray polarimetric observation of the black hole binary LMC X-1
We report on an X-ray polarimetric observation of the high-mass X-ray binary
LMC X-1 in the high/soft state, obtained by the Imaging X-ray Polarimetry
Explorer (IXPE) in October 2022. The measured polarization is below the minimum
detectable polarization of 1.1 per cent (at the 99 per cent confidence level).
Simultaneously, the source was observed with the NICER, NuSTAR and SRG/ART-XC
instruments, which enabled spectral decomposition into a dominant thermal
component and a Comptonized one. The low 2-8 keV polarization of the source did
not allow for strong constraints on the black-hole spin and inclination of the
accretion disc. However, if the orbital inclination of about 36 degrees is
assumed, then the upper limit is consistent with predictions for pure thermal
emission from geometrically thin and optically thick discs. Assuming the
polarization degree of the Comptonization component to be 0, 4, or 10 per cent,
and oriented perpendicular to the polarization of the disc emission (in turn
assumed to be perpendicular to the large scale ionization cone orientation
detected in the optical band), an upper limit to the polarization of the disc
emission of 1.0, 0.9 or 0.9 per cent, respectively, is found (at the 99 per
cent confidence level).Comment: 12 pages, 9 figures, 4 tables. Accepted for publication in MNRA
Magnetic Field Properties inside the Jet of Mrk 421: Multiwavelength Polarimetry Including the Imaging X-ray Polarimetry Explorer
We conducted a polarimetry campaign from radio to X-ray wavelengths of the
high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry
Explorer (IXPE) measurements on 2022 December 6-8. We detected X-ray
polarization of Mrk 421 with a degree of =141 and an
electric-vector position angle =1073 in the 2-8
keV band. From the time variability analysis, we find a significant episodic
variation in . During 7 months from the first IXPE pointing of
Mrk 421 in 2022 May, varied across the range of 0 to
180, while maintained similar values within
10-15. Furthermore, a swing in in 2022 June was
accompanied by simultaneous spectral variations. The results of the
multiwavelength polarimetry show that the X-ray polarization degree was
generally 2-3 times greater than that at longer wavelengths, while the
polarization angle fluctuated. Additionally, based on radio, infrared, and
optical polarimetry, we find that rotation of occurred in the opposite
direction with respect to the rotation of over longer timescales
at similar epochs. The polarization behavior observed across multiple
wavelengths is consistent with previous IXPE findings for HSP blazars. This
result favors the energy-stratified shock model developed to explain variable
emission in relativistic jets. The accompanying spectral variation during the
rotation can be explained by a fluctuation in the physical
conditions, e.g., in the energy distribution of relativistic electrons. The
opposite rotation direction of between the X-ray and longer-wavelength
polarization accentuates the conclusion that the X-ray emitting region is
spatially separated from that at longer wavelengths.Comment: 17 pages, 13 figures, 4 tables; Accepted for publication in A&
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
The role of networks to overcome large-scale challenges in tomography : the non-clinical tomography users research network
Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives
Food Sovereignty and Agricultural Land Use Planning: The Need To Integrate Public Priorities Across Jurisdictions
Recent calls for national food policies that promote greater food sovereignty represent an emerging concern of public policy. Such a shift in food policy toward greater citizen control over domestic food supplies would have significant implications for all aspects of the agri-food system. One area of concern is the conservation and use of agricultural land because, in the end, every act of producing and consuming food has direct or indirect impacts on the land base. Yet no research has considered the potential interactions and implications between food sovereignty and agricultural land use planning. This gap in research presents an opportunity to critically examine the effects of the changing roles and values on agricultural land use planning within and across jurisdictions. We believe that a better understanding of the dominant policy regimes within the agri-food system, including global competitiveness, farmland preservation, and food sovereignty, can lead to land use planning practices that are most beneficial for integrating not only multiple interests across jurisdictions, but also multiple perspectives