160 research outputs found

    Effects of Cyclic Chronic Heat Stress on the Expression of Nutrient Transporters in the Jejunum of Modern Broilers and Their Ancestor Wild Jungle Fowl

    Get PDF
    snibaThe mechanisms associated between growth rate, gut integrity and heat stress (HS) responses are not known. The current study aimed to evaluate the effect of chronic HS on jejunal nutrient transport in slow- (ACRB from 1950), moderate- (95RAN from 1995), rapid-(modern broilers, MRB) growing birds, and their ancestor wild jungle fowl (JF). One-day male chicks (n=150/line) were placed by line in environmentally controlled chambers and kept under the same environmental conditions until d28. On d29, an 8-h daily cyclic HS (36ºC) was applied to half of the chambers, which lasts until d55, while keeping the rest under thermal neutral conditions (TN, 24°C). Jejunum tissues were collected for morphology assessment and molecular analysis of carbohydrate-, amino acid- and fatty acid- transporters. MRB exhibited the highest BW followed by 95RAN under both conditions. HS decreased FI in MRB and 95RAN, which results in lower BW compared to their TN counterparts, however no effect was observed in ACRB and JF. MRB showed greater villus height to crypt depth ratio under both environmental conditions. Molecular analyses showed that GLUT2, 5, 10, and 11 were upregulated in MRB compared to some of the other populations under TN conditions. HS down regulated GLUT2, 10, 11, and 12 in MRB while it increased the expression of GLUT1, 5, 10, and 11 in JF. GLUT2 protein expression was higher in JF compared to ACRB and MRB under TN conditions. It also showed an increase in ACRB but no effect on 95RAN and MRB under HS conditions. ACRB exhibited greater expression of EAAT3 gene as compared to the rest of populations maintained under TN conditions. HS exposure did not alter the gene expression of amino acid transporters in MRB. Gene expression of CD36 and FABP2 was up-regulated in HS JF birds. Protein expression of CD36 was down-regulated in HS JF while no effect was observed in ACRB, 95RAN and MRB. Taken together, these data are the first to show the effect of HS on jejunal expression of nutrient transporters in three broiler populations known to represent 70 years of genetic progress in the poultry industr

    Polygenic risk scores indicate extreme ages at onset of breast cancer in female BRCA1/2 pathogenic variant carriers

    Get PDF
    BACKGROUND: Clinical management of women carrying a germline pathogenic variant (PV) in the BRCA1/2 genes demands for accurate age-dependent estimators of breast cancer (BC) risks, which were found to be affected by a variety of intrinsic and extrinsic factors. Here we assess the contribution of polygenic risk scores (PRSs) to the occurrence of extreme phenotypes with respect to age at onset, namely, primary BC diagnosis before the age of 35 years (early diagnosis, ED) and cancer-free survival until the age of 60 years (late/no diagnosis, LD) in female BRCA1/2 PV carriers. METHODS: Overall, estrogen receptor (ER)-positive, and ER-negative BC PRSs as developed by Kuchenbaecker et al. for BC risk discrimination in female BRCA1/2 PV carriers were employed for PRS computation in a curated sample of 295 women of European descent carrying PVs in the BRCA1 (n=183) or the BRCA2 gene (n=112), and did either fulfill the ED criteria (n=162, mean age at diagnosis: 28.3 years, range: 20 to 34 years) or the LD criteria (n=133). Binomial logistic regression was applied to assess the association of standardized PRSs with either ED or LD under adjustment for patient recruitment criteria for germline testing and localization of BRCA1/2 PVs in the corresponding BC or ovarian cancer (OC) cluster regions. RESULTS: For BRCA1 PV carriers, the standardized overall BC PRS displayed the strongest association with ED (odds ratio (OR) = 1.62; 95% confidence interval (CI): 1.16–2.31, p<0.01). Additionally, statistically significant associations of selection for the patient recruitment criteria for germline testing and localization of pathogenic PVs outside the BRCA1 OC cluster region with ED were observed. For BRCA2 PV carriers, the standardized PRS for ER-negative BC displayed the strongest association (OR = 2.27, 95% CI: 1.45–3.78, p<0.001). CONCLUSIONS: PRSs contribute to the development of extreme phenotypes of female BRCA1/2 PV carriers with respect to age at primary BC diagnosis. Construction of optimized PRS SNP sets for BC risk stratification in BRCA1/2 PV carriers should be the task of future studies with larger, well-defined study samples. Furthermore, our results provide further evidence, that localization of PVs in BC/OC cluster regions might be considered in BC risk calculations for unaffected BRCA1/2 PV carriers

    Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell

    Get PDF
    Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing

    Phosphatase and tensin homologue: a therapeutic target for SMA

    Get PDF
    Spinal muscular atrophy (SMA) is one of the most common juvenile neurodegenerative diseases, which can be associated with child mortality. SMA is caused by a mutation of ubiquitously expressed gene, Survival Motor Neuron1 (SMN1), leading to reduced SMN protein and the motor neuron death. The disease is incurable and the only therapeutic strategy to follow is to improve the expression of SMN protein levels in motor neurons. Significant numbers of motor neurons in SMA mice and SMA cultures are caspase positive with condensed nuclei, suggesting that these cells are prone to a process of cell death called apoptosis. Searching for other potential molecules or signaling pathways that are neuroprotective for central nervous system (CNS) insults is essential for widening the scope of developmental medicine. PTEN, a Phosphatase and Tensin homologue, is a tumor suppressor, which is widely expressed in CNS. PTEN depletion activates anti-apoptotic factors and it is evident that the pathway plays an important protective role in many neurodegenerative disorders. It functions as a negative regulator of PIP3/AKT pathway and thereby modulates its downstream cellular functions through lipid phosphatase activity. Moreover, previous reports from our group demonstrated that, PTEN depletion using viral vector delivery system in SMN delta7 mice reduces disease pathology, with significant rescue on survival rate and the body weight of the SMA mice. Thus knockdown/depletion/mutation of PTEN and manipulation of PTEN medicated Akt/PKB signaling pathway may represent an important therapeutic strategy to promote motor neuron survival in SMA

    Prevalence of cancer predisposition germline variants in male breast cancer patients: results of the German Consortium for Hereditary Breast and Ovarian Cancer

    Get PDF
    Male breast cancer (mBC) is associated with a high prevalence of pathogenic variants (PVs) in the BRCA2 gene; however, data regarding other BC predisposition genes are limited. In this retrospective multicenter study, we investigated the prevalence of PVs in BRCA1/2 and 23 non-BRCA1/2 genes using a sample of 614 patients with mBC, recruited through the centers of the German Consortium for Hereditary Breast and Ovarian Cancer. A high proportion of patients with mBC carried PVs in BRCA2 (23.0%, 142/614) and BRCA1 (4.6%, 28/614). The prevalence of BRCA1/2 PVs was 11.0% in patients with mBC without a family history of breast and/or ovarian cancer. Patients with BRCA1/2 PVs did not show an earlier disease onset than those without. The predominant clinical presentation of tumor phenotypes was estrogen receptor (ER)-positive, progesterone receptor (PR)-positive, and HER2-negative (77.7%); further, 10.2% of the tumors were triple-positive, and 1.2% were triple-negative. No association was found between ER/PR/HER2 status and BRCA1/2 PV occurrence. Comparing the prevalence of protein-truncating variants (PTVs) between patients with mBC and control data (ExAC, n = 27,173) revealed significant associations of PTVs in both BRCA1 and BRCA2 with mBC (BRCA1: OR = 17.04, 95% CI = 10.54-26.82, p &lt; 10(-5); BRCA2: OR = 77.71, 95% CI = 58.71-102.33, p &lt; 10(-5)). A case-control investigation of 23 non-BRCA1/2 genes in 340 BRCA1/2-negative patients and ExAC controls revealed significant associations of PTVs in CHEK2, PALB2, and ATM with mBC (CHEK2: OR = 3.78, 95% CI = 1.59-7.71, p = 0.002; PALB2: OR = 14.77, 95% CI = 5.02-36.02, p &lt; 10(-5); ATM: OR = 3.36, 95% CI = 0.89-8.96, p = 0.04). Overall, our findings support the benefit of multi-gene panel testing in patients with mBC irrespective of their family history, age at disease onset, and tumor phenotype

    Age-Related Intraneuronal Elevation of αII-Spectrin Breakdown Product SBDP120 in Rodent Forebrain Accelerates in 3×Tg-AD Mice

    Get PDF
    Spectrins line the intracellular surface of plasmalemma and play a critical role in supporting cytoskeletal stability and flexibility. Spectrins can be proteolytically degraded by calpains and caspases, yielding breakdown products (SBDPs) of various molecular sizes, with SBDP120 being largely derived from caspase-3 cleavage. SBDPs are putative biomarkers for traumatic brain injury. The levels of SBDPs also elevate in the brain during aging and perhaps in Alzheimer’s disease (AD), although the cellular basis for this change is currently unclear. Here we examined age-related SBDP120 alteration in forebrain neurons in rats and in the triple transgenic model of AD (3×Tg-AD) relative to non-transgenic controls. SBDP120 immunoreactivity (IR) was found in cortical neuronal somata in aged rats, and was prominent in the proximal dendrites of the olfactory bulb mitral cells. Western blot and densitometric analyses in wild-type mice revealed an age-related elevation of intraneuronal SBDP120 in the forebrain which was more robust in their 3×Tg-AD counterparts. The intraneuronal SBDP120 occurrence was not spatiotemporally correlated with transgenic amyloid precursor protein (APP) expression, β-amyloid plaque development, or phosphorylated tau expression over various forebrain regions or lamina. No microscopically detectable in situ activated caspase-3 was found in the nuclei of SBDP120-containing neurons. The present study demonstrates the age-dependent intraneuronal presence of an αII-spectrin cleavage fragment in mammalian forebrain which is exacerbated in a transgenic model of AD. This novel neuronal alteration indicates that impairments in membrane protein metabolism, possibly due to neuronal calcium mishandling and/or enhancement of calcium sensitive proteolysis, occur during aging and in transgenic AD mice

    Full-Length L1CAM and Not Its Δ2Δ27 Splice Variant Promotes Metastasis through Induction of Gelatinase Expression

    Get PDF
    Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression

    Spectrin-based skeleton as an actor in cell signaling

    Get PDF
    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types

    Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers
    corecore