2,645 research outputs found

    Three-dimensional fluid motion in Faraday waves: creation of vorticity and generation of two-dimensional turbulence

    Full text link
    We study the generation of 2D turbulence in Faraday waves by investigating the creation of spatially periodic vortices in this system. Measurements which couple a diffusing light imaging technique and particle tracking algorithms allow the simultaneous observation of the three-dimensional fluid motion and of the temporal changes in the wave field topography. Quasi-standing waves are found to coexist with a spatially extended fluid transport. More specifically, the destruction of regular patterns of oscillons coincides with the emergence of a complex fluid motion whose statistics are similar to that of two-dimensional turbulence. We reveal that a lattice of oscillons generates vorticity at the oscillon scale in the horizontal flow. The interaction of these vortices explain how 2D turbulence is fueled by almost standing waves. Remarkably, the curvature of Lagrangian trajectories reveals a "footprint" of the forcing scale vortices in fully developed turbulence. 2D Navier-Stokes turbulence should be considered a source of disorder in Faraday waves. These findings also provide a new paradigm for vorticity creation in 2D flows

    Electron localisation in static and time-dependent one-dimensional model systems

    Get PDF
    Electron localization is the tendency of an electron in a many-body system to exclude other electrons from its vicinity. Using a new natural measure of localization based on the exact manyelectron wavefunction, we find that localization can vary considerably between different ground-state systems, and can also be strongly disrupted, as a function of time, when a system is driven by an applied electric field. We use our new measure to assess the well-known electron localization function (ELF), both in its approximate single-particle form (often applied within density-functional theory) and its full many-particle form. The full ELF always gives an excellent description of localization, but the approximate ELF fails in time-dependent situations, even when the exact Kohn-Sham orbitals are employed.Comment: 7 pages, 4 figure

    Diffusional Relaxation in Random Sequential Deposition

    Full text link
    The effect of diffusional relaxation on the random sequential deposition process is studied in the limit of fast deposition. Expression for the coverage as a function of time are analytically derived for both the short-time and long-time regimes. These results are tested and compared with numerical simulations.Comment: 9 pages + 2 figure

    Specificity in V(D)J recombination: new lessons from biochemistry and genetics

    Get PDF
    Recent in vitro work on V(D)J recombination has helped to clarify its mechanism. The first stage of the reaction, which can be reproduced with the purified RAG1 and RAG2 proteins, is a site-specific cleavage that generates the same broken DNA species found in vivo. The cleavage reaction is closely related to known types of transpositional recombination, such as that of HIV integrase. All the site specificity of V(D)J recombination, including the 12/23 rule, is determined by the RAG proteins. The later steps largely overlap with the repair of radiation-induced DNA double-strand breaks, as indicated by the identity of several newly characterized factors involved in repair. These developments open the way for a thorough biochemical study of V(D)J recombination
    • 

    corecore