1,871 research outputs found

    DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles

    Get PDF
    Biodesulfurization (BDS) of dibenzothiophene (DBT) was carried out by Rhodococcus erythropolis IGST8 decorated with magnetic Fe3O4 nanoparticles, synthesized in-house by a chemical method, with an average size of 45-50 nm, in order to facilitate the post-reaction separation of the bacteria from the reaction mixture. Scanning electron microscopy (SEM) showed that the magnetic nanoparticles substantially coated the surfaces of the bacteria. It was found that the decorated cells had a 56% higher DBT desulfurization activity in basic salt medium (BSM) compared to the nondecorated cells. We propose that this is due to permeabilization of the bacterial membrane, facilitating the entry and exit of reactant and product, respectively. Model experiments with black lipid membranes (BLM) demonstrated that the nanoparticles indeed enhance membrane permeability

    National FCEV Learning Demonstration: Spring 2011 All Composite Data Products With Updates Through March 29, 2011

    Full text link
    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes all the composite data products produced to date (with updates through March 29, 2011) as part of the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration

    A novel concept for the manufacture of individual sapphire-metallic hip joint endoprostheses.

    Get PDF
    At the present time, artificial joints made with metallic, ceramic, metal-polymeric or ceramicpolymeric friction pairs substituting for the natural biomechanic articulations "head of the hip joint-acetabulum" are widely used for endoprosthetic operations on hip joints. Experience gained in the course of more than 2000 operations has shown that along with the advantageous properties of modern endoprosthetic constructions made of metal, ceramics and polymers, they have certain drawbacks. Among them are insufficient biological inertness and susceptibility to excessive wear of the friction pair components. In addition, as a result of wear of the hinge friction pair, toxic and oncologically dangerous products of degradation accumulate in the different organs and tissues. This in turn results in severe complications and demands correspondingly complicated corrective intervention, often leading to worse disability than that which the original operation was designed to cure. The aim of the study reported here was the development and clinical validation of a highly effective and long-lived hip joint endoprosthesis with a sapphire head whose wear capacity is superior to all others. The endoprosthesis consists of a metallic pedicle, a dismountable articulation (metallic necklayer of supramolecular polyethylene-sapphire head) and an acetabular cup. The endoprostheses with the sapphire head proved themselves positively in clinical trials and are considered to be highly promising for future applications

    Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system.

    Get PDF
    The photophysics of an amino-styrylbenzene dendrimer (A-DSB) system is probed by time-resolved and steady state luminescence spectroscopy. For two different generations of this dendrimer, steady state absorption, emission, and photoluminescence excitation spectra are reported and show that the efficiency of energy transfer from the dendrons to the core is very close to 100%. Ultrafast time-resolved fluorescence measurements at a range of excitation and detection wavelengths suggest rapid (and hence efficient) energy transfer from the dendron to the core. Ultrafast fluorescence anisotropy decay for different dendrimer generations is described in order to probe the energy migration processes. A femtosecond time-scale fluorescence depolarization was observed with the zero and second generation dendrimers. Energy transfer process from the dendrons to the core can be described by a Förster mechanism (hopping dynamics) while the interbranch interaction in A-DSB core was found to be very strong indicating the crossover to exciton dynamics

    Higher education, mature students and employment goals: policies and practices in the UK

    Get PDF
    This article considers recent policies of Higher Education in the UK, which are aimed at widening participation and meeting the needs of employers. The focus is on the growing population of part-time students, and the implications of policies for this group. The article takes a critical perspective on government policies, using data from a major study of mature part-time students, conducted in two specialist institutions in the UK, a London University college and a distance learning university. Findings from this study throw doubt on the feasibility of determining a priori what kind of study pathway is most conducive for the individual in terms of employment gains and opportunities for upward social mobility. In conclusion, doubts are raised as to whether policies such as those of the present UK government are likely to achieve its aims. Such policies are not unique to the UK, and lessons from this country are relevant to most of the developed world
    corecore