4,419 research outputs found

    A search for electron cyclotron maser emission from compact binaries

    Full text link
    Unipolar induction (UI) is a fundamental physical process, which occurs when a conducting body transverses a magnetic field. It has been suggested that UI is operating in RX J0806+15 and RX J1914+24, which are believed to be ultra-compact binaries with orbital periods of 5.4 min and 9.6 min respectively. The UI model predicts that those two sources may be electron cyclotron maser sources at radio wavelengths. Other systems in which UI has been predicted to occur are short period extra-solar terrestrial planets with conducting cores. If UI is present, circularly polarised radio emission is predicted to be emitted. We have searched for this predicted radio emission from short period binaries using the VLA and ATCA. In one epoch we find evidence for a radio source, coincident in position with the optical position of RX J0806+15. Although we cannot completely exclude that this is a chance alignment between the position of RX J0806+15 and an artifact in the data reduction process, the fact that it was detected at a significance level of 5.8 sigma and found to be transient, suggests that it is more likely that RX J0806+15 is a transient radio source. We find an upper limit on the degree of circular polarisation to be ~50%. The inferred brightness temperature exceeds 10^18 K, which is too high for any known incoherent process, but is consistent with maser emission and UI being the driving mechanism. We did not detect radio emission from ES Cet, RX J1914+24 or Gliese 876.Comment: Accepted for publication MNRA

    Solid immersion lens applications for nanophotonic devices

    Get PDF
    Solid immersion lens (SIL) microscopy combines the advantages of conventional microscopy with those of near-field techniques, and is being increasingly adopted across a diverse range of technologies and applications. A comprehensive overview of the state-of-the-art in this rapidly expanding subject is therefore increasingly relevant. Important benefits are enabled by SIL-focusing, including an improved lateral and axial spatial profiling resolution when a SIL is used in laser-scanning microscopy or excitation, and an improved collection efficiency when a SIL is used in a light-collection mode, for example in fluorescence micro-spectroscopy. These advantages arise from the increase in numerical aperture (NA) that is provided by a SIL. Other SIL-enhanced improvements, for example spherical-aberration-free sub-surface imaging, are a fundamental consequence of the aplanatic imaging condition that results from the spherical geometry of the SIL. Beginning with an introduction to the theory of SIL imaging, the unique properties of SILs are exposed to provide advantages in applications involving the interrogation of photonic and electronic nanostructures. Such applications range from the sub-surface examination of the complex three-dimensional microstructures fabricated in silicon integrated circuits, to quantum photoluminescence and transmission measurements in semiconductor quantum dot nanostructures

    A burst from the direction of UZ Fornacis with XMM-Newton

    Get PDF
    The XMM-Newton pointing towards the magnetic cataclysmic variable UZ For finds the source to be a factor > 10^3 fainter than previous EXOSAT and ROSAT observations. The source was not detected for the majority of a 22 ksec exposure with the EPIC cameras, suggesting that the accretion rate either decreased, or stopped altogether. However a 1.1 ksec burst was detected from UZ For during the observation. Spectral fits favour optically thin, kT = 4.4 keV thermal emission. Detection of the burst by the on-board Optical Monitor indicates that this was most probably an accretion event. The 0.1-10 keV luminosity of 2.1 x 10^30 erg/s is typical for accretion shock emission from high state polars and would result from the potential energy release of ~ 10^16 g of gas. There is no significant soft excess due to reprocessing in the white dwarf atmosphere.Comment: 7 pages, 2 postscript figures, ApJL, in pres

    Fast optical preparation, control, and readout of a single quantum dot spin

    Get PDF
    We propose and demonstrate the sequential initialization, optical control, and readout of a single spin trapped in a semiconductor quantum dot. Hole spin preparation is achieved through ionization of a resonantly excited electron-hole pair. Optical control is observed as a coherent Rabi rotation between the hole and charged-exciton states, which is conditional on the initial hole spin state. The spin-selective creation of the charged exciton provides a photocurrent readout of the hole spin state. © 2008 The American Physical Society

    An Adolescent Nutrition Learning Model to Facilitate Behavior Change in Overweight Teens

    Get PDF
    Understanding the process by which adolescents learn about nutrition is necessary for developing tailored education that leads to sustainable behavior change. Teens aged 15–17 participating in an obesity prevention program were interviewed. From the data, three themes emerged and informed development of an adolescent nutrition learning model. The themes were (a) valuable nutrition information provided by a reputable source, (b) hands-on learning as a learning preference, and (c) the linking of concepts learned to behavior change. The adolescent nutrition learning model that resulted encapsulates obese adolescents\u27 process for learning about nutrition to bring about behavior change and can be integrated into nutrition education programs and interventions

    Identifying patients' support needs following critical illness:A scoping review of the qualitative literature

    Get PDF
    BACKGROUND: Intensive care survivors suffer chronic and potentially life-changing physical, psychosocial and cognitive sequelae, and supporting recovery is an international priority. As survivors' transition from the intensive care unit to home, their support needs develop and change. METHODS: In this scoping review, we categorised patients' support needs using House's Social Support Needs framework (informational, emotional, instrumental, appraisal) and mapped these against the Timing it Right framework reflecting the patient's transition from intensive care (event/diagnosis) to ward (stabilisation/preparation) and discharge home (implementation/adaptation). We searched electronic databases from 2000 to 2017 for qualitative research studies reporting adult critical care survivors' experiences of care. Two reviewers independently screened, extracted and coded data. Data were analysed using a thematic framework approach. RESULTS: From 3035 references, we included 32 studies involving 702 patients. Studies were conducted in UK and Europe (n = 17, 53%), Canada and the USA (n = 6, 19%), Australasia (n = 6, 19%), Hong Kong (n = 1, 3%), Jordan (n = 1, 3%) and multi-country (n = 1, 3%). Across the recovery trajectory, informational, emotional, instrumental, appraisal and spiritual support needs were evident, and the nature and intensity of need differed when mapped against the Timing it Right framework. Informational needs changed from needing basic facts about admission, to detail about progress and treatments and coping with long-term sequelae. The nature of emotional needs changed from needing to cope with confusion, anxiety and comfort, to a need for security and family presence, coping with flashbacks, and needing counselling and community support. Early instrumental needs ranged from managing sleep, fatigue, pain and needing nursing care and transitioned to needing physical and cognitive ability support, strength training and personal hygiene; and at home, regaining independence, strength and return to work. Appraisal needs related to obtaining feedback on progress, and after discharge, needing reassurance from others who had been through the ICU experience. CONCLUSIONS: This review is the first to identify the change in social support needs among intensive care survivors as they transition from intensive care to the home environment. An understanding of needs at different transition periods would help inform health service provision and support for survivors

    FUSE and HST/STIS far-ultraviolet observations of AM Herculis in an extended low state

    Full text link
    We have obtained FUSE and HST/STIS time-resolved spectroscopy of the polar AM Herculis during a deep low state. The spectra are entirely dominated by the emission of the white dwarf. Both the far-ultraviolet (FUV) flux as well as the spectral shape vary substantially over the orbital period, with maximum flux occurring at the same phase as during the high state. The variations are due to the presence of a hot spot on the white dwarf, which we model quantitatively. The white dwarf parameters can be determined from a spectral fit to the faint phase data, when the hot spot is self-eclipsed. Adopting the distance of 79+8-6pc determined by Thorstensen, we find an effective temperature of 19800+-700K and a mass of Mwd=0.78+0.12-0.17Msun. The hot spot has a lower temperature than during the high state, ~34000-40000K, but covers a similar area, ~10% of the white dwarf surface. Low state FUSE and STIS spectra taken during four different epochs in 2002/3 show no variation of the FUV flux level or spectral shape, implying that the white dwarf temperature and the hot spot temperature, size, and location do not depend on the amount of time the system has spent in the low state. Possible explanations are ongoing accretion at a low level, or deep heating, both alternatives have some weaknesses that we discuss. No photospheric metal absorption lines are detected in the FUSE and STIS spectra, suggesting that the average metal abundances in the white dwarf atmosphere are lower than 1e-3 times their solar values.Comment: ApJ in press, 12 pages, 11 figure

    The OmegaWhite Survey for Short-Period Variable Stars IV: Discovery of the warm DQ white dwarf OW J175358.85-310728.9

    Get PDF
    We present the discovery and follow-up observations of the second known variable warm DQ white dwarf OW J175358.85-310728.9 (OW J1753-3107). OW J1753-3107 is the brightest of any of the currently known warm or hot DQ and was discovered in the OmegaWhite Survey as exhibiting optical variations on a period of 35.5452 (2) mins, with no evidence for other periods in its light curves. This period has remained constant over the last two years and a single-period sinusoidal model provides a good fit for all follow-up light curves. The spectrum consists of a very blue continuum with strong absorption lines of neutral and ionised carbon, a broad He I 4471 A line, and possibly weaker hydrogen lines. The C I lines are Zeeman split, and indicate the presence of a strong magnetic field. Using spectral Paschen-Back model descriptions, we determine that OW J1753-3107 exhibits the following physical parameters: T_eff = 15430 K, log(g) = 9.0, log(N(C)/N(He)) = -1.2, and the mean magnetic field strength is B_z =2.1 MG. This relatively low temperature and carbon abundance (compared to the expected properties of hot DQs) is similar to that seen in the other warm DQ SDSS J1036+6522. Although OW J1753-3107 appears to be a twin of SDSS J1036+6522, it exhibits a modulation on a period slightly longer than the dominant period in SDSS J1036+6522 and has a higher carbon abundance. The source of variations is uncertain, but they are believed to originate from the rotation of the magnetic white dwarf.Comment: 11 pages, 8 figures, 7 tables. Accepted for publication by MNRA
    corecore