18 research outputs found

    Diseño y construcción de un equipo de soldadura por fricción con asistencia láser para la unión de ejes de acero AISI 1045 y aluminio 2017-T4

    Get PDF
    Welding metal alloys with dissimilar melting points make conventional welding processes unfeasible to be used. On the other hand, friction welding has proven to be a promising technology capable of joining materials, while preventing the temperature from exceeding the melting point. However, obtaining a welded joint with mechanical properties that are similar to the base materials remains a challenge. In the development of this work, a laser-assisted rotary friction welding equipment was designed and manufactured. A 3 HP conventional lathe was used to provide rotary movement, and a hydraulic pressure system that applies axial force through a simple effect cylinder was designed to generate friction to obtain the union between the base materials. In the implemented equipment, joints of AISI 1045 steel and 2017-T6 aluminum shafts were made. The welded joints were metallurgically evaluated, emphasizing on the chemical composition at the weld interface. For microstructure characterization, scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and glow discharge optical emission spectrometry (GDOES) were used to measure the initial composition of the welded materials. The results obtained show an adequate joint between the base materials, denoting the usefulness of the equipment manufactured for the union of dissimilar materials.La soldadura de materiales disímiles hace que los procesos de soldadura convencional no sean factibles de ser utilizados. La soldadura por fricción, por otro lado, ha demostrado ser una tecnología prometedora capaz de unir materiales sin que la temperatura supere su punto de fusión. Sin embargo, la obtención de las propiedades mecánicas de la junta soldada con características similares a los materiales base sigue siendo un desafío. En el desarrollo de este trabajo se diseñó y fabricó un equipo de soldadura por fricción rotatoria con asistencia láser. Para proporcionar el movimiento rotatorio se empleó un torno convencional de 3 HP de potencia y para generar fricción se diseñó un sistema hidráulico de presión el cual aplica fuerza axial mediante un cilindro de simple efecto para obtener la unión entre los materiales base. En el equipo implementado se realizaron uniones de ejes de acero AISI 1045 con aluminio 2017-T6; las uniones soldadas se evaluaron metalúrgicamente, haciendo hincapié en la composición química en la interfaz de la soldadura. Para la caracterización de la microestructura se empleó microscopía electrónica de barrido (SEM), espectroscopía de dispersión de energía (EDS) y espectrometría de emisión óptica de descarga luminiscente (GDOES) para medir la composición inicial de los materiales que se soldaron. Los resultados obtenidos muestran una adecuada unión entre los materiales base, denotando la utilidad del equipo fabricado para la unión de materiales disimiles

    Diseño y construcción de un equipo de soldadura por fricción con asistencia láser para la unión de ejes de acero AISI 1045 y aluminio 2017-T4

    Get PDF
    La soldadura de materiales disímiles hace que los procesos de soldadura convencional no sean factibles de ser utilizados. La soldadura por fricción, por otro lado, ha demostrado ser una tecnología prometedora capaz de unir materiales sin que la temperatura supere su punto de fusión. Sin embargo, la obtención de las propiedades mecánicas de la junta soldada con características similares a los materiales base sigue siendo un desafío. En el desarrollo de este trabajo se diseñó y fabricó un equipo de soldadura por fricción rotatoria con asistencia láser. Para proporcionar el movimiento rotatorio se empleó un torno convencional de 3 HP de potencia y para generar fricción se diseñó un sistema hidráulico de presión el cual aplica fuerza axial mediante un cilindro de simple efecto para obtener la unión entre los materiales base. En el equipo implementado se realizaron uniones de ejes de acero AISI 1045 con aluminio 2017-T6; las uniones soldadas se evaluaron metalúrgicamente, haciendo hincapié en la composición química en la interfaz de la soldadura. Para la caracterización de la microestructura se empleó microscopía electrónica de barrido (SEM), espectroscopía de dispersión de energía (EDS) y espectrometría de emisión óptica de descarga luminiscente (GDOES) para medir la composición inicial de los materiales que se soldaron. Los resultados obtenidos muestran una adecuada unión entre los materiales base, denotando la utilidad del equipo fabricado para la unión de materiales disimiles.//Welding metal alloys with dissimilar melting points make conventional welding processes unfeasible to be used. On the other hand, friction welding has proven to be a promising technology capable of joining materials, while preventing the temperature from exceeding the melting point. However, obtaining a welded joint with mechanical properties that are similar to the base materials remains a challenge. In the development of this work, a laser-assisted rotary friction welding equipment was designed and manufactured. A 3 HP conventional lathe was used to provide rotary movement, and a hydraulic pressure system that applies axial force through a simple effect cylinder was designed to generate friction to obtain the union between the base materials. In the implemented equipment, joints of AISI 1045 steel and 2017-T6 aluminum shafts were made. The welded joints were metallurgically evaluated, emphasizing on the chemical composition at the weld interface. For microstructure characterization, scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and glow discharge optical emission spectrometry (GDOES) were used to measure the initial composition of the welded materials. The results obtained show an adequate joint between the base materials, denoting the usefulness of the equipment manufactured for the union of dissimilar materials

    Surface roughness Ra prediction in Selective Laser Melting of 316L stainless steel by means of artificial intelligence inference

    No full text
    Selective Laser Melting (SLM) is a widely used metal additive manufacturing process due to the possibility of elaborating complicated and customized tridimensional parts or components. This paper presents research on predicting surface roughness of 316L stainless steel manufactured SLM parts using the well-known multilayer perceptron (MLP) and an adaptive neuro-fuzzy inference system (ANFIS). Two models were adjusted to predict the top surface quality for different values of laser power, scanning speed, and hatch distance. The obtained results were evaluated and compared in order to ensure the goodness of fit of both techniques. The multilayer perceptron-based model has proved, to possess better predictive capability of the non-linear relationships of the SLM process. However, adequate results were also obtained with the adjusted ANFIS. The consistency of the presented models is also compared with previously published empirical formulations and discussed. As a final result, has been demonstrated that both fitted models outperform the previously published statistic-based approaches
    corecore