9 research outputs found

    SPGCam: A specifically tailored camera for solar observations

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Designing a new astronomical instrument typically challenges the available cameras on the market. In many cases, no camera can fulfill the requirements of the instrument in terms of photon budget, speed, and even interfaces with the rest of the instrument. In this situation, the only options are to either downgrade the performance of the instrument or design new cameras from scratch, provided it is possible to identify a compliant detector. The latter is the case of the SPGCams, the cameras developed to be used with the Tunable Magnetograph (TuMag) and the Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for the Sunrise iii mission. SPGCams have been designed, developed, and built entirely in-house by the Solar Physics Group (SPG) at the Instituto de Astrofísica de Andalucía (IAA-CSIC). We report here on the scientific rationale and system engineering requirements set by the two instruments that drove the development, as well as on the technical details and trade-offs used to fulfill the specifications. The cameras were fully verified before the flight, and results from the assembly and verification campaign are presented as well. SPGCams share the design, although some parametric features differentiate the visible cameras (for TuMag) and the IR ones (for SCIP). Even though they were specifically developed for the Sunrise iii mission, the robust and careful design makes them suitable for different applications in other astronomical instruments. © 2023 Orozco Suárez, Álvarez García, López Jiménez, Balaguer Jiménez, Hernández Expósito, Labrousse, Bailén, Bustamante Díaz, Bailón Martínez, Aparicio del Moral, Morales Fernández, Sánchez Gómez, Tobaruela Abarca, Moreno Mantas, Ramos Más, Pérez Grande, Piqueras Carreño, Katsukawa, Kubo, Kawabata, Oba, Rodríguez Valido, Magdaleno Castelló and Del Toro Iniesta.This work was funded by the Spanish MCIN/AEI, under projects RTI 2018-096886-B-C5, PID 2021-125325OB-C5, and PCI 2022-135009-2, and co-funded by European FEDER funds, “A way of making Europe,” under grants CEX 2021-001131-S and 10.13039/501100011033.Peer reviewe

    Revisiting TrES-5 b: departure from a linear ephemeris instead of short-period transit timing variation

    No full text
    Aims. The orbital motion of the transiting hot Jupiter TrES-5 b was reported to be perturbed by a planetary companion on a nearby orbit. Such compact systems do not frequently occur in nature, and investigating their orbital architecture could shed some light on the formation processes of hot Jupiters. Methods. We acquired 15 new precise photometric time-series for 12 transits of TrES-5 b between June 2019 and October 2020 using 0.9-2.0 m telescopes. The method of precise transit timing was employed to verify the deviation of the planet from the Keplerian motion. Results. Although our results show no detectable short-time variation in the orbital period of TrES-5 b and the existence of the additional nearby planet is not confirmed, the new transits were observed about two minutes earlier than expected. We conclude that the orbital period of the planet could vary on a long timescale. We found that the most likely explanation of the observations is the line-of-sight acceleration of the system's barycentre caused by the orbital motion induced by a massive, wide-orbiting companion. © ESO 2021.G.M. acknowledges the financial support from the National Science Centre, Poland through grant no. 2016/23/B/ST9/00579. M.F. acknowledges financial support from grant PID2019-109522GB-C5X/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation (MICINN). M.F., F.A., and J.L.R. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). This research has made use of the SIMBAD database and the VizieR catalogue access tool, operated at CDS, Strasbourg, France, and NASA’s Astrophysics Data System Bibliographic Services.Peer reviewe

    Image compression on reconfigurable FPGA for the SO/PHI space instrument

    Get PDF
    In this paper we present a novel FPGA implementation of the Consultative Committee for Space Data Systems Image Data Compression (CCSDS-IDC 122.0-B-1) for performing image compression aboard the Polarimetric Helioseismic Imager instrument of the ESA's Solar Orbiter mission. This is a System-On-Chip solution based on a light multicore architecture combined with an efficient ad-hoc Bit Plane Encoder core. This hardware architecture performs an acceleration of ~30 times with respect to a software implementation running into space-qualified processors, like LEON3. The system stands out over other FPGA implementations because of the low resource usage, which does not use any external memory, and of its configurability. © 2018 SPIE.This work has been partially funded by the Spanish Ministerio de Economia y Competitividad, through Project No. ESP2016-77548-C5-1-R, including a percentage from European FEDER funds

    25 aniversario del Observatorio de Sierra Nevada (2006)

    No full text
    Sumario : Historia de una fotografía.-- Cronología de los inicios.-- Comienzos del proyecto de los telescopios chinos.-- Telescopios e instrumentación.-- Ciencia con el OSN.-- OSN: una historia de desarrollo instrumental.-- Contaminación lumínica en el OSN.N

    The quick RTE inversion on FPGA for DKIST

    Get PDF
    In this contribution we present a multi-core system-on-chip, embedded on FPGA, for real-time data processing, to be used in the Daniel K. Inouye Solar Telescope (DKIST). Our system will provide "quick-look" magnetic field vector and line-of-sight velocity maps to help solar physicists to react to specific solar events or features during observations or to address specific phenomena while analyzing the data off line. The stand-alone device will be installed at the National Solar Observatory (NSO) Data Center. It will be integrated in the processing data pipeline through a software interface, and is competitive in computing speed to complex computer clusters. © 2018 SPIE.This work has been partially funded by the Spanish Ministerio de Economia y Competitividad, through Project No. ESP2016-77548-C5-1-R, including a percentage from European FEDER funds

    Reconfigurable accelerator on FPGA for scientific computing: from a space-borne instrument to a high-performance computing data center: work-in-progress

    No full text
    We present a scientific computing accelerator on FPGA that uses hundreds of processors working in parallel organized in several SIMD cores. The accelerator is installed within an Ethernet network and acts as a high-performance computing server. A prototype is presented for processing solar images and achieves a great performance that can compete with a cluster. © 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.This work has been partially funded by the Spanish Ministerio de Ciencia, Innovación y Universidades, through Projects No.ESP2016-77548-C5-1-R and RTI2018-096886-B-C51, including a percentage from European FEDER funds. Authors also acknowledge financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709

    Microrelatario

    No full text
    Basta/Prou es el resultado de El desafío por la erradicación de la violencia contra las mujeres que el Instituto Universitario de Estudios Feministas y de Género Purificación Escribano de la Universitat Jaume I lanzó en los Diez días contra la violencia de género 2012

    Differential clinical characteristics and prognosis of intraventricular conduction defects in patients with chronic heart failure

    No full text
    Intraventricular conduction defects (IVCDs) can impair prognosis of heart failure (HF), but their specific impact is not well established. This study aimed to analyse the clinical profile and outcomes of HF patients with LBBB, right bundle branch block (RBBB), left anterior fascicular block (LAFB), and no IVCDs. Clinical variables and outcomes after a median follow-up of 21 months were analysed in 1762 patients with chronic HF and LBBB (n = 532), RBBB (n = 134), LAFB (n = 154), and no IVCDs (n = 942). LBBB was associated with more marked LV dilation, depressed LVEF, and mitral valve regurgitation. Patients with RBBB presented overt signs of congestive HF and depressed right ventricular motion. The LAFB group presented intermediate clinical characteristics, and patients with no IVCDs were more often women with less enlarged left ventricles and less depressed LVEF. Death occurred in 332 patients (interannual mortality = 10.8%): cardiovascular in 257, extravascular in 61, and of unknown origin in 14 patients. Cardiac death occurred in 230 (pump failure in 171 and sudden death in 59). An adjusted Cox model showed higher risk of cardiac death and pump failure death in the LBBB and RBBB than in the LAFB and the no IVCD groups. LBBB and RBBB are associated with different clinical profiles and both are independent predictors of increased risk of cardiac death in patients with HF. A more favourable prognosis was observed in patients with LAFB and in those free of IVCDs. Further research in HF patients with RBBB is warranted
    corecore