26,048 research outputs found

    Rings and arcs around evolved stars. II. The Carbon Star AFGL 3068 and the Planetary Nebulae NGC 6543, NGC 7009 and NGC 7027

    Get PDF
    We present a detailed comparative study of the arcs and fragmented ring-like features in the haloes of the planetary nebulae (PNe) NGC 6543, NGC 7009, and NGC 7027 and the spiral pattern around the carbon star AFGL 3068 using high-quality multi-epoch HST images. This comparison allows us to investigate the connection and possible evolution between the regular patterns surrounding AGB stars and the irregular concentric patterns around PNe. The radial proper motion of these features, ~15 km/s, are found to be consistent with the AGB wind and their linear sizes and inter-lapse times (500-1900 yr) also agree with those found around AGB stars, suggesting a common origin. We find evidence using radiative-hydrodynamic simulations that regular patterns produced at the end of the AGB phase become highly distorted by their interactions with the expanding PN and the anisotropic illumination and ionization patterns caused by shadow instabilities. These processes will disrupt the regular (mostly spiral) patterns around AGB stars, plausibly becoming the arcs and fragmented rings observed in the haloes of PNe.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Investigation of qq-dependent dynamical heterogeneity in a colloidal gel by x-ray photon correlation spectroscopy

    Get PDF
    We use time-resolved X-Photon Correlation Spectroscopy to investigate the slow dynamics of colloidal gels made of moderately attractive carbon black particles. We show that the slow dynamics is temporally heterogeneous and quantify its fluctuations by measuring the variance χ\chi of the instantaneous intensity correlation function. The amplitude of dynamical fluctuations has a non-monotonic dependence on scattering vector qq, in stark contrast with recent experiments on strongly attractive colloidal gels [Duri and Cipelletti, \textit{Europhys. Lett.} \textbf{76}, 972 (2006)]. We propose a simple scaling argument for the qq-dependence of fluctuations in glassy systems that rationalizes these findings.Comment: Final version published in PR

    On the new translational shape invariant potentials

    Full text link
    Recently, several authors have found new translational shape invariant potentials not present in classic classifications like that of Infeld and Hull. For example, Quesne on the one hand and Bougie, Gangopadhyaya and Mallow on the other have provided examples of them, consisting on deformations of the classical ones. We analyze the basic properties of the new examples and observe a compatibility equation which has to be satisfied by them. We study particular cases of such equation and give more examples of new translational shape invariant potentials.Comment: 9 pages, uses iopart10.clo, version

    Helicity-Rotation-Gravity Coupling for Gravitational Waves

    Get PDF
    The consequences of spin-rotation-gravity coupling are worked out for linear gravitational waves. The coupling of helicity of the wave with the rotation of a gravitational-wave antenna is investigated and the resulting modifications in the Doppler effect and aberration are pointed out for incident high-frequency gravitational radiation. Extending these results to the case of a gravitomagnetic field via the gravitational Larmor theorem, the rotation of linear polarization of gravitational radiation propagating in the field of a rotating mass is studied. It is shown that in this case the linear polarization state rotates by twice the Skrotskii angle as a consequence of the spin-2 character of linear gravitational waves.Comment: 11 pages, no figures, accepted for publication in Phys. Rev. D; v2: a few minor typos correcte

    Impactos da expansão canavieira em Ribeirão Preto, SP.

    Get PDF
    Este artigo apresenta os dados de um diagnóstico agroflorestal realizado na região canavieira de Ribeirão Preto, em área onde atualmente se encontra o assentamento agroecológico Sepé Tiaraju, mostrando os impactos sobre a biodiversidade provocados pela expansão da atividade canavieira na últimas quatro décadas

    The KπK\pi form factors from Analyticity and Unitarity

    Full text link
    Analyticity and unitarity techniques are employed to obtain bounds on the shape parameters of the scalar and vector form factors of semileptonic Kl3K_{l3} decays. For this purpose we use vector and scalar correlators evaluated in pQCD, a low energy theorem for scalar form factor, lattice results for the ratio of kaon and pion decay constants, chiral perturbation theory calculations for the scalar form factor at the Callan-Treiman point and experimental information on the phase and modulus of KπK\pi form factors up to an energy \tin=1 {\rm GeV}^2. We further derive regions on the real axis and in the complex-energy plane where the form factors cannot have zeros.Comment: 6 pages, 5 figures; Seminar given at DAE-BRNS Workshop on Hadron Physics Bhabha Atomic Research Centre, Mumbai, India October 31-November 4, 2011, submitted to Proceeding

    Estimation of water use and crop coefficients for an intensive olive orchard using sap flow measurements and modeled data

    Get PDF
    Olive tree sap flow measurements were collected in an intensive orchard near Évora, Portugal, during the irrigation seasons of 2013 and 2014, to calculate daily tree transpiration rates (T_SF). Meteorological variables were also collected to calculate reference evapotranspiration (ETo). Both data were used to assess values of basal crop coefficient (Kcb) for the period of the sap flow observations. The soil water balance model SIMDualKc was calibrated with soil, biophysical ground data and sap flow measurements collected in 2013. Validated in 2014 with collected sap flow observations, the model was used to provide estimates of dual e single crop coefficients for 2014 crop growing season. Good agreement between model simulated daily transpiration rates and those obtained with sapflow measurements was observed for 2014 (R2=0.76, RMSE=0.20 mm d-1), the year of validation, with an estimation average absolute error (AAE) of 0.20 mm d-1. Olive modeled daily actual evapotranspiration resulted in atual ETc values of 0.87, 2.05 and 0.77 mm d-1 for 2014 initial, mid- and end-season, respectively. Actual crop coefficient (Kc act) values of 0.51, 0.43 and 0.67 were also obtained for the same periods, respectively. Higher Kc values during spring (initial stage) and autumn (end-stage) were published in FAO56, varying between 0.65 for Kc ini and 0.70 for Kc end. The lower Kc mid value of 0.43 obtained for the summer (mid-season) is also inconsistent with the FAO56 expected Kc mid value of 0.70 for the period. The modeled Kc results are more consistent with the ones published by Allen & Pereira [1] for olive orchards with effective ground cover of 0.25 to 0.5, which vary between 0.40 and 0.80 for Kc ini, 0.40–0.60 for Kc mid with no active ground cover, and 0.35–0.75 for Kc end, depending on ground cover. The SIMDualKc simulation model proved to be appropriate for obtaining evapotranspiration and crop coefficient values for our intensive olive orchard in southern Portugal

    Olive water use and crop coefficients from energy balance and radiometric canopy temperatures

    Get PDF
    Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season
    corecore