37,543 research outputs found

    Production of thermal photons in viscous fluid dynamics with temperature-dependent shear viscosity

    Full text link
    We compute the spectrum of thermal photons created in Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV, taking into account dissipative corrections in production processes corresponding to the quark--gluon plasma and hadronic phases. To describe the evolution of the fireball we use a viscous fluid dynamic model with different parametrizations for the temperature--dependence of η/s\eta/s. We find that the spectrum significantly depends on the values of η/s\eta/s in the QGP phase, and is almost insensitive to the values in the hadronic phase. We also compare the influence of the temperature--dependence of η/s\eta/s on the spectrum of thermal photons to that of using different equations of state in the fluid dynamic simulations, finding that both effects are of the same order of magnitude.Comment: 16 pages, 4 figures. Accepted for publication in Mod. Phys. Lett.

    Chaotic behavior of the Compound Nucleus, open Quantum Dots and other nanostructures

    Full text link
    It is well established that physical systems exhibit both ordered and chaotic behavior. The chaotic behavior of nanostructure such as open quantum dots has been confirmed experimentally and discussed exhaustively theoretically. This is manifested through random fluctuations in the electronic conductance. What useful information can be extracted from this noise in the conductance? In this contribution we shall address this question. In particular, we will show that the average maxima density in the conductance is directly related to the correlation function whose characteristic width is a measure of energy- or applied magnetic field- correlation length. The idea behind the above has been originally discovered in the context of the atomic nucleus, a mesoscopic system. Our findings are directly applicable to graphene.Comment: 10 pages, 5 figures. Contribution to: "4th International Workshop on Compound-Nuclear Reactions and Related Topics (CNR*13)", October 7-11, 2013, Maresias, Brazil. To appear in the proceeding

    Obtaining a class of Type N pure radiation metrics using invariant operators

    Get PDF
    We develop further the integration procedure in the generalised invariant formalism, and demonstrate its efficiency by obtaining a class of Petrov type N pure radiation metrics without any explicit integration, and with comparatively little detailed calculations. The method is similar to the one exploited by Edgar and Vickers when deriving the general conformally flat pure radiation metric. A major addition to the technique is the introduction of non-intrinsic elements in generalised invariant formalism, which can be exploited to keep calculations manageable.Comment: This work was presented in July 2004, in the Gr17 meeting held in Dublin-Irelan

    Modelling a layer for real-time management of interactions in web based distance learning

    Get PDF
    In the last few years, the University of Aveiro, Portugal, has been offering several distance learning courses over the Web, using e-learning platforms. Experience showed that different editions of a same course, using the same contents and structure, and having similar target learners, had different success rates. What would be the reason for that? A hypothesis was considered: The level of success could be directly related with the remote follow-up of the learners’ participation in the courses; the best results usually occur when the follow-up is closer. The existing e-learning platforms offer and the standardization works being developed by organizations and consortiums like IMS (IMS Global Learning Consortium, Inc), ADL SCORM (Advanced Distributed Learning Sherable Content Object Reference Model), IEEE LTSC LOM (Institute of Electrical and Electronic Engineers Learning Technologies Standard Committee Learning Object Metadata), ARIADNE (ARIADNE Foundation for the European Knowledge Pool), AICC CMI (Aviation Industry CBT Committee Computer Managed Instruction), etc, don’t cover the course monitorization concerns mentioned. Those projects were focused on aspects like contents and its delivery in the context of the execution of the courses’ activities. This is even true in the SCORM project that doesn’t include any reference to the management of the e-learning processes. Recently, in the context of the IMS Global Consortium, a new project designated IMS LD (Learning Design) is under development, providing a framework for the description of learning units under a three level model. In the most recently defined level, the C level, some functionalities related to notifications were proposed, expressing similar concerns to the ones that triggered our research. However, the extent at which IMS LD takes the functionalities is, from our point of view, not complete. This article describes a proposal of a reference model and functionalities towards a specification of a layer for real-time management of user interactions on LMSs, and its possible integration with the ADL SCORM standard proposal. The paper includes a discussion of the management metadata model for the LMS sub-system and how the integration of the management module under SCORM may be achieved

    Enhancing web supported learning in higher education by adding a management layer to LMSs

    Get PDF
    There are many situations in the e-Learning experiences that can compromise the success of the courses. Many times simple reasons are great enough to motivate people to abandon them. For example, if someone does not execute a programmed activity inside the defined window of time, it can compromise the rest of the course to that person. In such situations it would be important that the teacher knew about the situation in useful time, to be able to take any corrective action. Another example could be presented, involving the professor and the learners. Let us assume that an activity A2 is programmed to be executed by the learners and that it depends on the previous knowledge of the result of the evaluation of a work submitted by the learners to the teacher (activity A1). If the teacher doesn’t inform the learners about their classification in useful time, that can compromise the execution of the activity A2. It seems to be necessary to use mechanisms of automatic management, in real time, of the envolvement of each participant in a distance learning course using LMS (Learning Management System). Such a functionality allows the detection of deviations to the scheduled activities planned for each actor. If it is the case, the referred mechanism can initiate the process of sending notifications to the relevant entities, enabling the correction of these deviations. Several organizations and consortiuns, involving the industry, governmental institutions and universities, are developing projects of standardization. It seemed important to us to see how the referred aspects were covered by those projects, and to perceive how it could be possible to articulate our work with the ones that are available from these organizations and consortiuns. This article describes the work that the authors are developing towards the specification of a layer for real-time management of user interactions with LMSs, during the operationalization of a course, and also includes a management meta-data model, related to that management layer

    A note on the predictions of models with modular flavor symmetries

    Get PDF
    Models with modular flavor symmetries have been thought to be highly predictive. We point out that these predictions are subject to corrections from non–holomorphic terms in the Lagrangean. Specifically, in the models discussed in the literature, the Kähler potential is not fixed by the symmetries, for instance. The most general Kähler potential consistent with the symmetries of the model contains additional terms with additional parameters, which reduce the predictive power of these constructions. We also comment on potential ways of how one may conceivably retain the predictivity

    Generalized enthalpy model of a high pressure shift freezing process

    Get PDF
    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition the significant heat transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature
    • …
    corecore