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Abstract
We develop further the integration procedure in the generalized invariant
formalism, and demonstrate its efficiency by obtaining a class of Petrov type N
pure radiation metrics without any explicit integration, and with comparatively
little detailed calculations. The method is similar to the one exploited by
Edgar and Vickers when deriving the general conformally flat pure radiation
metric. A major addition to the technique is the introduction of non-intrinsic
elements in the generalized invariant formalism, which can be exploited to keep
calculations manageable.

PACS numbers: 04.20.−q, 11.27.+d

1. Introduction

The NP formalism [17] has been a very useful tool for obtaining and analysing solutions of
Einstein’s equations. The tetrad freedom inherent in this formalism has been both a boon and
a hindrance; often a skilful tetrad choice gives an immediate simplification which sometimes
leads directly to a satisfactory conclusion, but at other times the original simplification proves
to be cosmetic and an impasse is reached in the calculations. There is usually an obvious
choice for the direction of the first null tetrad vector; sometimes the direction of the second
null tetrad vector suggests itself; but at times there is no geometric motivation to fix the spin
and boost freedom. An additional disadvantage is that the exploitation of the tetrad freedom,
especially that associated with null rotation and spin and boost after the first null direction
is fixed, can require long painstaking calculations, keeping track as intertwined tetrad and
coordinate freedoms are gradually used up in successive steps; the possibility of errors is
always present.

The GHP formalism [8], which generalizes the NP formalism, has the spin and boost
freedom inbuilt (as spin and boost ‘weight’) which means that we do not need to make an
explicit choice of spin and boost gauge; so this is the ideal formalism to use when investigating
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spaces which pick out two null directions in a geometric manner. Moreover, by rescaling all
quantities in the GHP formalism to zero-weighted quantities, together with only one complex
nonzero weighted quantity, we are able to separate out the effect of the spin and boost gauge
and essentially ignore it; working exclusively with zero-weighted quantities gives natural
coordinates and results which are more accessible to physical interpretation. In addition the
messy calculations often associated with fixing the spin and boost gauge do not occur.

However, investigations of those spacetimes where only the direction of one null vector
is picked out geometrically, often encounter the complication associated with the freedom of
a null rotation. This freedom can cause analogous computational complications in a GHP
analysis as the spin and boost freedom case in a NP analysis.

The generalized invariant formalism (GIF) [15, 16] generalizes the GHP formalism by
essentially building the null rotation freedom into the GIF, which means that the formalism is
built around one dyad spinor oA, and we do not need to make an explicit choice for the null
rotation freedom of the second dyad spinor ιA. But the price we pay is that we have to move
from a scalar to a spinor formalism, which at first sight appears very complicated, and even
unwieldy. However, manipulating within the GIF is in practice (although not in appearance)
not much more complicated than the scalar manipulations of the GHP formalism.

Some years ago Held [9, 10] outlined an idealized integration method in an ‘optimal
situation’ using the GHP formalism. He advocated manipulating the GHP equations until
they were reduced to a complete and involutive set of tables involving first derivative GHP
operators; from these tables Held argued it should be possible to read off the metric without
having to perform any explicit integrations. Subsequently this idea has been developed and
applied in a number of ways, and it is now understood that the ‘optimal situation’ is when the
manipulation succeeds in generating a table for each of four real zero-weighted scalars (which
will become the coordinates) and a table for one complex nonzero-weighted scalar (which
describes the spin and boost gauge) [4]. An important technique in this method is the repeated
application of the commutator equations; however, in addition, it is crucial to recognize the
theoretical importance of the commutator equations where important information resides (as
well as in the GHP Ricci and Bianchi equations) and in order that all this information is
extracted it is essential that the commutators should have been applied explicitly to these five
scalars [4]. These five tables will not in general be completely involutive and we would expect
some additional scalars and their (possibly, partial) tables to ensure a complete and involutive
system.

Following the pioneering work of Held [9, 10], the most striking illustrations of the
advantages and efficiency of this GHP formalism have been illustrated in a re-investigation of
Petrov D vacuum metrics [1, 2] where key constraint equations were obtained with a fraction
of the calculations required in the NP formalism, and in the re-investigation of the conformally
flat pure radiation metrics [5] where new solutions were obtained, which had been overlooked
in the complexities of an earlier NP investigation [18].

In a recent paper by Edgar and Vickers [7] this GHP integration method was generalized
to the GIF [15]. Again, the method consists of manipulating all the equations of the formalism
to construct a complete and involutive set of tables involving first derivative GIF spinor
operators. The ‘optimal situation’ to be sought is to generate a table for each of four real
zero-weighted scalars (which will become the coordinates), a table for one complex (non-
trivially-)weighted scalar (which describes the spin and boost gauge) and a table for a second
spinor IA; such a spinor (which is not parallel to the first dyad spinor oA) should emerge
naturally from the calculations, and can then be identified as the second dyad spinor ιA.
Again, an important element in this method is to recognize that much information resides in
the GIF commutator equations (as well as in the GIF Ricci and Bianchi equations) and in
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order that all this information is extracted it is essential that the commutators should have been
applied explicitly to these five scalars as well as to the new spinor IA. Once these tables have
been found, and the new spinor identified with the second dyad spinor ιA, the problem can be
reduced to a purely scalar one in the GHP formalism.

The advantage of the GIF was illustrated by a further investigation of the conformally
flat pure radiation metrics [7]. In the GHP investigation a degree of guesswork and luck was
involved in obtaining that particular choice of null rotation which fixed the direction of the
second null vector in such a manner that subsequent calculations became manageable. In
the GIF no explicit choice was needed, since the formalism deals only with quantities which
are invariant under such null rotations. Moreover, the resulting form for the class of metrics
was such that Killing vector properties were obvious and the invariant classification procedure
could easily be deduced; such conclusions could not be made from the form of the metric
obtained by the GHP analysis. The two metric forms differ only slightly in appearance, but
are fundamentally different in the interpretation of some of the coordinates.

An intriguing aspect of this GHP and GIF integration method is that it is best suited to
spaces without any Killing vectors. The principle of the method is to try to generate the four
coordinates directly from the intrinsic elements of the formalism, i.e. the spin coefficients,
the Riemann tensor tetrad components, and operator derivatives of all of these; and in spaces
with no Killing vectors the coordinates will be generated in this manner. When Killing vectors
are present there are not enough intrinsic elements of the formalism to generate four intrinsic
coordinates, and so new non-intrinsic elements have to be introduced. These can be tetrad
components of the Killing vectors, or other elements introduced as ‘potentials’ of the intrinsic
elements, and which satisfy the commutator equations identically.

The conformally flat pure radiation metrics [5, 7] provided an ‘optimal situation’ and gave
a comparatively simple demonstration because we were able to generate all four coordinates
intrinsically from the elements of the formalism in the generic case [7]. However, there was
a subclass of these spaces for which we could only generate three coordinates intrinsically
(corresponding to the existence of a Killing vector). We were able to identify these spaces by
modifying the technique and using the structure of the commutators to motivate a coordinate
choice from outside the intrinsic elements of the GIF; we then explicitly confirmed that this
choice was compatible with all the other equations.

This technique of introducing a new non-intrinsic element into the computations—
motivated by the property that it automatically satisfies the commutator equations and implies
no new constraints—is essential when dealing with spaces in which Killing vectors are present;
however, this technique can also be used to try and obtain simpler tables when the direct method
generates complicated ones.

So far, the conformally flat pure radiation metrics are the only class of metrics which
have been determined explicitly by this GIF procedure [7]. The GIF formalism was initially
designed to be used to investigate the invariant classification of spacetimes; in particular of
those metrics where the second null tetrad vector has no simple geometric links, e.g., Petrov
type N vacuum spaces [14]. However, it is clear that the GIF can also be used for obtaining
solutions of Einstein’s equations for metrics with these properties, but before attacking very
difficult problems such as the whole class of vacuum type N twisting metrics, it is necessary
to build up more experience of using the GIF.

Therefore, in an effort to better understand how the GIF integration procedure works in
practice we shall investigate a class of Petrov type N pure radiation metrics. These metrics
are close enough to their conformally flat counterparts in [7] for us to get some hints of
how to tackle them in the GIF, but sufficiently different to present some new challenges; in
particular we expect a richer Killing vector structure, and hence a less direct method. Unlike
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in [7] where we followed a direct method, and only brought in one coordinate candidate
from outside the formalism at the last step, in this approach we will introduce a new element
from the beginning. These metrics are well known, especially in their familiar Kundt form
[11]. So the purpose of this paper is not to find new solutions, but rather to rederive a known
class by developing new techniques within the GIF procedure; in particular to demonstrate
how introducing non-intrinsic elements can keep calculations simple and manageable. We
are further motivated to demonstrate the power of the GIF approach for these spaces because
attempts to make an investigation of these spaces simply and efficiently in the GHP formalism
have been unsuccessful due to the problem of the null rotational freedom of the second tetrad
vector; instead a very detailed and involved calculation has been needed in the NP formalism
and in a hybrid approach combining GHP with NP ideas [6].

In the next section we summarize the GIF [15], with special reference to differential
operators. In section 3 we specialize the GIF to the class of spaces under discussion, and
in section 4 we carry out the GIF integration procedure for these spaces. Section 5 gives a
summary.

2. The differential operators

In the GIF the role of the spin coefficients κ , σ , ρ and τ is taken up by spinor quantities
K, S, R and T given by

K = κ

SA′ = σ ōA′ − κ ῑA′

RA = ρoA − κιA

TAA′ = τoAōA′ − ρoAῑA′ − σ ιAōA′ + κιAῑA′ .

(1)

Under a transformation of the spin frame given by

oA �→ λoA ιA �→ λ−1ιA + āoA (2)

these transform as

K �→ λ3λ̄K
SA′ �→ λ3SA′

RA �→ λ2λ̄RA

TAA′ �→ λ2TAA′ .

(3)

They are therefore invariant under null rotations and have weight {p, q} under spin and boost
transformations given by

K : {333,111}
S : {333,000}
R : {222,111}
T : {222,000}.

(4)

The role of the differential operators Io, ∂
�

, Io′ and ∂
�′ is played by new differential operators IoIoIo,

∂
�

∂
�

∂
�

, IoIoIo′ and ∂
�

∂
�

∂
�′ which act on properly weighted symmetric spinors to produce symmetric spinors

of different valence and weight. These operators may all be defined in terms of an auxiliary
differential operator DABA′B ′ which is defined by

DABA′B ′ηC1...CNC ′
1...C

′
N ′ = oAōA′∇BB ′ηC1...CNC ′

1...C
′
N ′

− (pōA′∇BB ′oA + qoA∇BB ′ ōA′)ηC1...CNC ′
1...C

′
N ′ , (5)

where η has weight {p, q}.
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We will need to know the result of contracting IoIoIo′η with o and ō. We can write equation (5)
in the form

DABA′B ′ηC1...CNC ′
1...C

′
N ′ = (

Io′ηC1...CNC ′
1...C

′
N ′

)
oAoB ōA′ ōB ′ − (

∂
�′ηC1...CNC ′

1...C
′
N ′

)
oAoB ōA′ ῑB ′

− (
∂

�

ηC1...CNC ′
1...C

′
N ′

)
oAιB ōA′ ōB ′ − (

IoηC1...CNC ′
1...C

′
N ′

)
oAιB ōA′ ῑB ′

+ (pιAōA′TBB ′ + qoAῑB ′ T̄B ′B)ηC1...CNC ′
1...C

′
N ′ , (6)

where Io′, ∂�′, ∂� and Io are the ordinary GHP operators applied to spinors. The new operators
are obtained by contraction with o and ō, and symmetrizing.

(IoIoIoη)AC1...CN A′C ′
1...C

′
N ′ =

∑
sym

oB ōB ′DABA′B ′ηC1...CNC ′
1...C

′
N ′ (7)

(∂
�

∂
�

∂
�

η)AC1...CNA′B ′C ′
1...C

′
N ′ =

∑
sym

oBDABA′B ′ηC1...CNC ′
1...C

′
N ′ (8)

(∂
�

∂
�

∂
�′η)ABC1...CNA′C ′

1...C
′
N ′ =

∑
sym

ōB ′DABA′B ′ηC1...CNC ′
1...C

′
N ′ (9)

(IoIoIo′η)ABC1...CNA′B ′C ′
1...C

′
N ′ =

∑
sym

DABA′B ′ηC1...CNC ′
1...C

′
N ′ (10)

where
∑

sym indicates symmetrization over all free primed and unprimed indices.
In the case of a scalar field this gives

(IoIoIo′η)ABA′B ′ = (Io′η)oAoB ōA′ ōB ′ − (∂
�′η − qτ̄η)oAoB ō(A′ ῑB ′) − (∂

�

η − pτη)o(AιB)ōA′ ōB ′

+ (Ioη − pρη − qρ̄η)o(AιB)ō(A′ ῑB ′) + (pκιAιB ō(A′ ῑB ′) + qκ̄o(AιB)ῑA′ ῑB ′

−pσ ιAιB ōA′ ōB ′ − qσ̄oAoBιA′ιB ′)η. (11)

Contracting (11) with ōB ′
gives

(IoIoIo′η)ABA′B ′ ōB ′ = 1
2 {(∂�

∂
�

∂
�′η)ABA′ − q(τ̄oAoB ōA′ − ρ̄o(AιB)oA′ − σ̄oAoB ῑA′ + κ̄o(AιB)ιA′)η}

= 1
2 {(∂�

∂
�

∂
�′η)ABA′ − qT̄A′(AoB)η}, (12)

or in the compacted notation

(IoIoIo′η) · ō = 1
2 {(∂�

∂
�

∂
�′η) − qT̄η}. (13)

Similar calculations give

(IoIoIo′η) · o = 1
2 {(∂�

∂
�

∂
�

η) − pTη} (14)

(∂
�

∂
�

∂
�′η) · o = 1

2 {(IoIoIoη) − pRη} (15)

(∂
�

∂
�

∂
�

η) · ō = 1
2 {(IoIoIoη) − qR̄η} (16)

(IoIoIo′η) · o · ō = 1
4 {(IoIoIoη) − pRη − qR̄η}. (17)

For a spinor η the above contractions become more complicated. For example, for a valence
(1, 0)-spinor ηA of weight {p, q} we get

(IoIoIo′η) · o = 1
3 {IoIoIo′(η · o) + (∂

�

∂
�

∂
�′η) − (p − 1)Tη}. (18)

Although the definition of the differential operators is quite complicated, the fact that they
take symmetric spinors to symmetric spinors means that one can write down the equations in
an index free notation.
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The Ricci equations, Bianchi equations and the commutators for the general case are given
in [16]. This complete system of equations is completely equivalent to Einstein’s equations,
and to find solutions to Einstein’s equations this system will therefore have to be completely
integrated. However, in view of the more complicated nature of the operators in this formalism,
some of the information which resided in the Ricci equations in NP and/or GHP formalisms is
contained within the commutators in this formalism; in particular these commutators contain
inhomogeneous terms explicitly dependent on the weight and valence of the spinor on which
they act. To extract all the information in the commutators we need to apply them to [15]:

(i) four functionally independent {0, 0} weighted real scalars,
(ii) one {p, q} weighted complex scalar where p �= ±q,

(iii) one valence (1, 0) spinor IA of weight {−1, 0}.
Of course, we can extract all the information by applying the commutators to different

(but essentially equivalent) combinations of these scalars and spinor; however the particular
choices above are best suited to our integration procedure since the four {0, 0} weighted real
scalars will become the coordinates, the weighted complex scalar field is given by the {−2, 0}
scalar P̄Q (where the elements P̄ and Q in the composition are chosen in the interests of easy
comparison with existing results), while the spinor IA will be identified with the second dyad
spinor ιA.

3. The equations

We restrict our attention to the Petrov type N pure radiation spaces within the Kundt class of
spacetimes (with a non-expanding and non-twisting null congruence); this means that when we
choose oA to be aligned with the propagation direction of the radiation that the only remaining
parts of the Riemann tensor are �22 and 	4 which we simplify to � and 	 respectively,
remembering that � is real; also ρ = σ = κ = 0. In GIF, the Ricci spinor takes the form

ΦABA′B ′ = �oAoB ōA′ ōB ′ , (19)

where � is a real scalar field of weight {−2,−2} and the Weyl spinor takes the form

ΨABCD = 	oAoBoCoD, (20)

where 	 is a complex scalar field of weight {−4, 0}. The spin coefficients in GIF satisfy

K = 0 S = 0 R = 0 (21)

but

TAA′ = τoAōA′ . (22)

Note that τ,	4 and �22 are all invariant under the group of null rotations so that they can
be used instead of their GIF spinor equivalents; this gives a considerable simplification in the
GIF notation.

The GIF equations are

(i) GIF Ricci equations

IoIoIoτ = 0 (23)

∂
�

∂
�

∂
�

τ = τ 2 (24)

∂
�

∂
�

∂
�′τ = ττ . (25)
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(ii) GIF Bianchi identities

IoIoIo	 = 0 (26)

IoIoIo� = 0 (27)

∂
�

∂
�

∂
�

	 − ∂
�

∂
�

∂
�′� = τ	 − τ�. (28)

(iii) GIF commutators (applied to an invariant spinor η)

(IoIoIoIoIoIo′ − IoIoIo′IoIoIo)η = (τ∂
�

∂
�

∂
� + τ∂

�

∂
�

∂
�′)η (29)

(IoIoIo∂�

∂
�

∂
� − ∂

�

∂
�

∂
�IoIoIo)η = 0 (30)

(∂
�

∂
�

∂
�

∂
�

∂
�

∂
�′ − ∂

�

∂
�

∂
�′∂�

∂
�

∂
�

)η = 0 (31)

(IoIoIo′∂�

∂
�

∂
� − ∂

�

∂
�

∂
�IoIoIo′)η = −τIoIoIo′η − �(η · o) − 	(η · o). (32)

These GIF equations contain all the information for the type N pure radiation metrics. We
emphasize that we assume throughout that τ �= 0.

4. The integration procedure

4.1. Preliminary rearrangement

The spin coefficient τ will supply one real zero-weighted scalar (τ τ̄ ) and one real {1,−1}-
weighted scalar (τ/τ̄ ). However to keep the presentation of subsequent calculations as simple
as possible, it will be convenient to rearrange slightly, and following [7], use instead the
zero-weighted real scalar

A = 1√
2ττ

(33)

and the complex scalar

P =
√

τ

2τ
, (34)

where P is a scalar of weight {1,−1} and P P̄ = 1
2 .

We are assuming τ �= 0, and so A and P will always be defined and different from zero.
These choices give the two simple partial tables

IoIoIoP = 0 ∂
�

∂
�

∂
�

P = 0 ∂
�

∂
�

∂
�′P = 0 (35)

and

IoIoIoA = 0 ∂
�

∂
�

∂
�

A = −P ∂
�

∂
�

∂
�′A = −P . (36)

We could now complete these tables with the fourth operator IoIoIo′ by introducing unknown
spinors and then applying each of the commutators to the completed tables of P and A

respectively; unfortunately, the calculations soon become quite complicated.
Alternatively we could look for the other part of the weighted complex scalar by using

expressions such as the {−1,−1}-weighted scalar �
ττ̄

used in [7]. Again, calculations soon get
quite complicated.

4.2. Finding tables for the complex scalar P̄Q and the spinor I and applying commutators

So instead we examine the commutators and check whether their comparatively simple
structure suggests the existence of some simple table(s). In particular we know that we
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require a table for a real weighted (p = q �= 0) scalar to combine with P to give a non-trivial
weighted scalar of weight p �= ±q. From the structure of the commutators we are motivated
to consider the simplest possible partial table for a {−1,−1}-weighted scalar Q annihilated by
the first three operators

IoIoIoQ = 0 ∂
�

∂
�

∂
�

Q = 0 ∂
�

∂
�

∂
�′Q = 0, (37)

which leads us to consider the table for P̄Q

IoIoIo(P̄Q) = 0 ∂
�

∂
�

∂
�

(P̄Q) = 0 ∂
�

∂
�

∂
�′(P̄Q) = 0 IoIoIo′(P̄Q) = −Q

A
I, (38)

where we have completed the table with some spinor I, which is as yet undetermined. (We
have introduced the weighted factor −Q

A
in the above definition for I simply for convenience

in later calculations.)
It follows from (13) and (14) that

I · ō = − A

Q
(IoIoIo′(P̄Q)) · ō = − A

Q
∂

�

∂
�

∂
�′(P̄Q) = 0 (39)

I · o = − A

Q
(IoIoIo′(P̄Q)) · o = − A

Q
(∂

�

∂
�

∂
�

(P̄Q) + 2τ(P̄Q)) = −1. (40)

Hence I is a (1, 0) valence spinor, and from

(IoIoIo′(P̄Q))ABA′B ′ = −Q

A
I(AoB)ōA′ ōB ′ (41)

we conclude that its weight is {−111,000}.
So now we have to apply the commutators to the table for (P̄Q) which yields a partial

table for the spinor I; the complete table can be written as

IoIoIoI = 0 ∂
�

∂
�

∂
�I = 0 ∂

�

∂
�

∂
�′I = 0 IoIoIo′I = P̄Q2

A
W, (42)

where the spinor W is as yet undetermined. (The factor P̄Q2

A
is again just to improve efficiency

of presentation.) It follows from (18) that

W · ō = A

P̄Q2
(IoIoIo′I) · ō = 0 (43)

W · o = − A

P̄Q2
(IoIoIo′I) · o = 1

Q2P̄ 2
I. (44)

Hence

W = − 1

2P̄ 2Q2
I2 + W, (45)

where W is a (2, 0) valence spinor of weight {222,000}, and W is a zero-weighted complex scalar.
We next have to apply the commutators to the previous table for I after the substitution

(45); we obtain a partial table for the zero-weighted complex scalar W ,

IoIoIoW = 0 ∂
�

∂
�

∂
�

W = − A

PQ2
� ∂

�

∂
�

∂
�′W = − A

PQ2
	. (46)

When the commutators are applied to this partial table we obtain

IoIoIo	 = 0 (47)
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IoIoIo� = 0 (48)

∂
�

∂
�

∂
�

	 − ∂
�

∂
�

∂
�′� = τ	 − τ�, (49)

which are precisely the three Bianchi equations (26)–(28). Hence our guess for a table for
Q is completely compatible with the commutators and all the other equations. Furthermore,
checking the compatibility of our choice of table for PQ led to a table for the spinor I, whose
compatibility we have also checked via the commutators.

So we have obtained two of the core elements required in our analysis—a weighted scalar
PQ and a new spinor I which is not parallel to o—and used them to extract information from
the commutators.

4.3. Finding tables for two coordinate candidates and applying commutators to each

We can now use Q and I as defined above to complete the table for A, respecting spinor
valences and weights and identities (13) and (14), and obtain

IoIoIoA = 0 ∂
�

∂
�

∂
�

A = −P ∂
�

∂
�

∂
�′A = −P IoIoIo′A = P I + P I +

Q

A
N, (50)

where N is a real zero-weighted scalar, which is as yet undetermined.
The application of the commutators to this table determines a table for the scalar N,

IoIoIoN = − 1

Q
∂

�

∂
�

∂
�

N = 1

Q
I ∂

�

∂
�

∂
�′N = 1

Q
I IoIoIo′N = − 1

Q
II +

QL

A
, (51)

where L is a real zero-weighted scalar, which is as yet undetermined.
The application of the commutators to this table determines a partial table for the

scalar L,

IoIoIoL = 0 ∂
�

∂
�

∂
�

L = PW ∂
�

∂
�

∂
�′L = PW. (52)

At this stage we will review what we have obtained so far. We have tables for I, P ,Q,A,N

respectively, to all of which we have applied the commutators; this has yielded the further
partial tables for L and for (complex) W. Since A and N are real zero-weighted scalars to which
we have applied commutators they are two obvious candidates as coordinates. (Of course it
is necessary to confirm that these scalars are functionally independent, a fact which would
seem obvious from the structure of the right-hand side of their respective tables; however, we
will take care to confirm this explicitly when we translate these tables into the purely scalar
formalism.)

If we wish to adopt either of the three remaining real zero-weighted scalars (L or the real
or the imaginary part of W ) as coordinates, it would be necessary to complete the two tables
and then apply the commutators to each; calculations then begin to get complicated.

4.4. Finding tables for two more coordinate candidates and applying commutators

Alternatively, we can go back to the commutators to see if they suggest simple tables for the
remaining coordinates.

We begin with the very simple table for a zero-weighted scalar T,

IoIoIoT = 0 ∂
�

∂
�

∂
�

T = 0 ∂
�

∂
�

∂
�′T = 0 IoIoIo′T = Q

A
(53)

and we easily confirm that this table is internally consistent, as well as compatible with the
commutators and with all the other equations.
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Next we try the slightly more complicated table for a real zero-weighted scalar B,

IoIoIoB = 0 ∂
�

∂
�

∂
�

B = −iP ∂
�

∂
�

∂
�′B = iP IoIoIo′B = i(P I − PI) (54)

and again confirm that this table is internally consistent, as well as compatible with the
commutators and with all the other equations.

So we now have four coordinate candidates A,N, T , B, but it is necessary to confirm
that these are functionally independent before we can adopt them formally as coordinates.
Since these four scalars are zero-weighted, we can easily rewrite their tables using the NP
operators. We note that there are also tables for P,Q and I, but, since these contain only
gauge information, these tables play no role in the construction of the metric, and we do not
consider them further.

4.5. The tables in terms of scalar operators

If we identify the spinor I with the second dyad spinor ι, then the four tables for the zero-
weighted coordinate candidates T ,A,N,B can be easily translated into the familiar NP
operators,

DT = 0 δT = 0 δ′T = 0 �T = Q

A
(55)

DA = 0 δA = −P δ′A = −P �A = Q

A
N (56)

DN = − 1

Q
δN = 0 δ′N = 0 �N = Q

A
L (57)

DB = 0 δB = −iP δ′B = iP �B = 0. (58)

A simple observation of the determinant, formed from the four vectors taken from the right-
hand sides of each of the four tables respectively, confirms that all four scalars are functionally
independent; so we formally adopt them as coordinates. We note that these four tables for
T ,N,A,B are not strictly involutive in these scalars; there also occur the real scalars L and
W which satisfy respectively

DL = 0 δL = PW δ′L = PW (59)

DW = 0 δW = − A

PQ2
� δ′W = − A

PQ2
	. (60)

4.6. Using coordinate candidates as coordinates

If we now make the choice of the coordinate candidates T ,N,A,B as coordinates

t = T , n = N, a = A, b = B

the tetrad vectors can be obtained in the t, n, a, b coordinates from their respective tables as
follows:

li =
(

0,− 1

Q
, 0, 0

)
ni = Q

a
(1, L, n, 0)

mi = P(0, 0,−1,−i) ma = P(0, 0,−1, i)

(61)

and we can write out the NP derivatives as follows

D = − 1

Q

∂

∂n
(62)
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δ = −P

(
∂

∂a
+ i

∂

∂b

)
= −P

∂

∂ξ
(63)

� = Q

a

∂

∂t
+ L

∂

∂n
+

Qn

a

∂

∂a
, (64)

where it will be convenient to write ξ = a + ib.
The metric g can now be constructed using

gij = 2l(inj) − 2m(imj) (65)

to give in coordinates t, n, a, b,

gij =




0 −1/a 0 0
−1/a L/a −n/a 0

0 −n/a −1 0
0 0 0 −1


 . (66)

From (59) we have W̄ (t, ξ, ξ̄ ) = L,ξ where L is now a function of the three coordinates t, ξ, ξ̄ ,
and so from (60) we have

� = Q2

2A
L,ξξ (67)

	 = Q2P 2

A
L,ξξ . (68)

The above analysis is dependent on the condition that none of our four coordinate candidates
could be constant and still compatible with the equations; it is clear from considering the
respective tables (55), (56), (57), (58) that this is the case. Therefore we can conclude that
our analysis is complete in the sense that we have obtained the complete class of the metrics
under consideration, and have not missed any ‘special cases’.

The metric given by (66) is in very similar form to its version in [6]. We have made no
restrictions on the Riemann tensor components; therefore 	 = 0 gives the conformally flat
special class, and � = 0 gives the vacuum special class. Note however that the conformally
flat class is in different coordinates that in [7].

5. Conclusion

We have described here an alternative method within the GIF for obtaining solutions of
Einstein’s equations and applied it to a particular class of Petrov type N pure radiation
spaces. The basic ideas of this method were developed in the previous work by Edgar and
Vickers [7], where it was applied to obtain the general conformally flat pure radiation metric.
That class of spaces was ideal because the absence of Killing vectors, in general, enabled
a comparatively simple and direct analysis to be carried out; in this paper such a direct
analysis was not possible, and this is linked to a richer Killing vector structure. So, in this
application a modified approach was needed, and we have demonstrated how the introduction
of non-intrinsic elements, introduced so that they are compatible with the commutators, not
only overcomes any problem created by the absence of sufficient coordinate candidates, but
can also keep the calculations manageable. We anticipate that a major practical difficulty
encountered when using this method resides in how to construct the second spinor I such that
the subsequent tables will be as simple as possible; the procedure of introducing non-intrinsic
elements gives us some control over this.
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A big advantage of this procedure resides in the fact that one has managed to avoid having
to solve any differential equations. Another important advantage is that the complicated
detailed calculations needed to keep track of coordinate transformations and gauge freedoms
do not arise; this reduces the risk of direct computational mistakes, as well as the omission
of special cases. It is an important development that the GHP formalism now has computer
support [1, 2] and that attempts are being made to develop the GHP integration procedure
algorithmically in the programmes [3]; hopefully similar developments will occur soon
for GIF.

In a number of places in our calculations we have pointed out that there are alternative,
even apparently more ‘direct’, steps we could have chosen rather than the steps we have taken
in completing some of our tables; as already noted these steps would lead into much more
complicated calculations. The motivation in this paper has been to demonstrate that GIF can
provide comparatively simple routes to obtaining exact solutions; on the other hand, some of
these other more complicated routes, especially if we concentrate on intrinsic elements, are
likely to give additional insights into symmetry properties.

In [7] it was easy (in the generic case) to draw conclusions about the Killing vector
structure and invariant classification; this was because only intrinsic elements of the GIF were
used. In this paper we have introduced a non-intrinsic element early in our calculations, and
this makes it more difficult to draw conclusions about Killing vector structure and the invariant
classification. We shall discuss in detail how to incorporate these considerations in general
into GIF in a subsequent paper. At a more ambitious level, we are also applying this method
to more general vacuum type N metrics.
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