13 research outputs found

    The neurological level of spinal cord injury and cardiovascular risk factors: a systematic review and meta-analysis.

    Get PDF
    STUDY DESIGN Systematic review and meta-analysis. OBJECTIVE To determine the difference in cardiovascular risk factors (blood pressure, lipid profile, and markers of glucose metabolism and inflammation) according to the neurological level of spinal cord injury (SCI). METHODS We searched 5 electronic databases from inception until July 4, 2020. Data were extracted by two independent reviewers using a pre-defined data collection form. The pooled effect estimate was computed using random-effects models, and heterogeneity was calculated using I2 statistic and chi-squared test (CRD42020166162). RESULTS We screened 4863 abstracts, of which 47 studies with 3878 participants (3280 males, 526 females, 72 sex unknown) were included in the meta-analysis. Compared to paraplegia, individuals with tetraplegia had lower systolic and diastolic blood pressure (unadjusted weighted mean difference, -14.5 mmHg, 95% CI -19.2, -9.9; -7.0 mmHg 95% CI -9.2, -4.8, respectively), lower triglycerides (-10.9 mg/dL, 95% CI -19.7, -2.1), total cholesterol (-9.9 mg/dL, 95% CI -14.5, -5.4), high-density lipoprotein (-1.7 mg/dL, 95% CI -3.3, -0.2) and low-density lipoprotein (-5.8 mg/dL, 95% CI -9.0, -2.5). Comparing individuals with high- vs. low-thoracic SCI, persons with higher injury had lower systolic and diastolic blood pressure (-10.3 mmHg, 95% CI -13.4, -7.1; -5.3 mmHg 95% CI -7.5, -3.2, respectively), while no differences were found for low-density lipoprotein, serum glucose, insulin, and inflammation markers. High heterogeneity was partially explained by age, prevalent cardiovascular diseases and medication use, body mass index, sample size, and quality of studies. CONCLUSION In SCI individuals, the level of injury may be an additional non-modifiable cardiovascular risk factor. Future well-designed longitudinal studies with sufficient follow-up and providing sex-stratified analyses should confirm our findings and explore the role of SCI level in cardiovascular health and overall prognosis and survival

    The Swiss Spinal Cord Injury Cohort Study (SwiSCI) biobank: from concept to reality.

    Get PDF
    OBJECTIVES To describe the concept, establishment and the operationalization of the biobank of the Swiss Spinal Cord Injury Cohort Study (SwiSCI), the available biosamples, and demographic and clinical characteristics of study participants. SETTING The SwiSCI biobank is a platform for research within SwiSCI. It collects and processes serum, plasma, PBMCs, RNA, DNA, and urine from three rehabilitation centers. Samples are collected at admission to first rehabilitation and at discharge. Additionly, the biobank provides services to projects nested in SwiSCI or otherclinical trials among Spinal Cord Injury population. METHODS Descriptive statistics were used for an overview of available biosamples, study participant characteristics, and comparison of the participating centers. RESULTS Between the SwiSCI biobank establishment on June 27th, 2016, and October 19th, 2023, the SwiSCI Study has obtained informed consent from 524 individuals. Of these, 315 (60.1%) have agreed to donate biospecimens to the biobank. The average age of the contributors was 54 years (range: 38-65), with the majority being male (80%). Most participants suffered from traumatic injuries (66%) and were classified as paraplegic (64%). Approximately 80% presented with motor and sensory-incomplete SCI. The median Spinal Cord Independence Measure (SCIM) score was 31 (Interquartile Range: 19-58). The proportion of individuals providing paired biosamples at two distinct time points ranged from 63% (for RNA) to 65% (for urine and urine sediment). CONCLUSIONS The SwiSCI biobank is a unique platform designed to serve as a basis for collaborative SCI research, including multi-omics approaches. The longitudinal collection of biospecimens and cryopreservation of multiple aliquots for each participant are fundamental for scrutinizing the temporal associations, ensuring research reproducibility, and achieving an adequate sample size for future investigations

    Body Composition According to Spinal Cord Injury Level: A Systematic Review and Meta-Analysis.

    Get PDF
    The level of injury is linked with biochemical alterations and limitations in physical activity among individuals with spinal cord injury (SCI), which are crucial determinants of body composition. We searched five electronic databases from inception until 22 July 2021. The pooled effect estimates were computed using random-effects models, and heterogeneity was calculated using I2 statistics and the chi-squared test. Study quality was assessed using the Newcastle-Ottawa Scale. We pooled 40 studies comprising 4872 individuals with SCI (3991 males, 825 females, and 56 sex-unknown) in addition to chronic SCI (median injury duration 12.3 y, IQR 8.03-14.8). Individuals with tetraplegia had a higher fat percentage (weighted mean difference (WMD) 1.9%, 95% CI 0.6, 3.1) and lower lean mass (WMD -3.0 kg, 95% CI -5.9, -0.2) compared to those with paraplegia. Those with tetraplegia also had higher indicators of central adiposity (WMD, visceral adipose tissue area 0.24 dm2 95% CI 0.05, 0.43 and volume 1.05 L 95% CI 0.14, 1.95), whereas body mass index was lower in individuals with tetraplegia than paraplegia (WMD -0.9 kg/mg2, 95% CI -1.4, -0.5). Sex, age, and injury characteristics were observed to be sources of heterogeneity. Thus, individuals with tetraplegia have higher fat composition compared to paraplegia. Anthropometric measures, such as body mass index, may be inaccurate in describing adiposity in SCI individuals

    Systematic Review of the Effects of Oat Intake on Gastrointestinal Health.

    No full text
    BACKGROUND Oats are a food source with multiple health benefits that could support beneficial bacterial groups and provide important bioactive compounds for the gut. OBJECTIVES This review explores the association between oat intake, gastrointestinal (GI) symptoms, and microbial community changes in individuals with celiac disease (CeD), irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD) and without GI disease. METHODS Four databases and Google Scholar were systematically searched from inception until April 29, 2021. Clinical trials, observational studies, and in vitro studies with human gut-derived samples were included. RESULTS There were 84 articles [23 randomized controlled trials (RCTs), 21 nonrandomized trials, 8 observational studies, and 32 in vitro studies] included. Oat intake increased total bacterial count, Lactobacilli spp., and Bifidobacterium spp. in healthy individuals and those with CeD. There was an increased concentration of short-chain fatty acids and improved gut permeability with oat intake but with no significant quality-of-life difference. In some individuals with CeD, consumption of certain oat types was associated with worsening of GI symptoms. We found no studies reporting on IBS and only 3 for IBD. The quality of RCTs showed some concerns mostly in domains of randomization (73.9%), whereas the quality of evidence of non-RCTs, observational studies, and in vitro studies was satisfactory. CONCLUSIONS Oat intake was associated with the increase of beneficial bacterial groups in individuals without GI disease and those with CeD. Most studies showed no changes in GI symptoms with oat consumption. In vitro studies in CeD provide insight to oat-sensitive individuals and their GI mucosa, but the clinical studies remain limited, precluding our ability to draw firm conclusions. The prevalence of oat sensitivity in individuals with CeD should be further explored as this could improve clinical management and facilitate inclusion of oat in the diet for this population

    MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy

    Get PDF
    Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1) were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients

    Generation of <i>Mto1</i> knockdown mice by gene trap mutagenesis.

    No full text
    <p>(A) Integration of gene trap vector U3CEO in intron 6 of <i>Mto1</i>. Arrows indicate amplificons for RT-PCR. (B) RT-PCR of heart tissue shows reduced levels of <i>Mto1</i> transcripts using primers covering sequences 5′ or 3′ to the integration site, ***p<0.001. (C) Western blot showing a clear reduction of MTO1 protein in <i>Mto1</i>−/− mouse embryonic fibroblasts as compared to <i>Mto1</i>+/+ controls.</p
    corecore