67 research outputs found

    In vivo antitumor effect of proteoglycan fraction from Agaricus brasiliensis does not depend on the production of antitumor antibodies / O efeito antitumoral in vivo da fração proteoglicana de Agaricus brasiliensis não depende da produção de anticorpos antitumorais

    Get PDF
    Polysaccharides isolated from the edible mushroom Agaricus brasiliensis were previously shown to have antitumor, antiproliferative, and immunomodulatory activity. Here, we evaluated the in vivo effect of the acid-treated fraction from A. brasiliensis (ATF) on the subcutaneous growth of Ehrlich tumor cells (EHR) and on the production of tumor-specific antibodies. Mice (n=10) were inoculated with 2 × 106 EHR and injected subcutaneously in the tumor inoculum region with 0.1 mL ATF or saline. Control (tumor-free) group received ATF or saline. Treatments were carried out for 7, 14, or 30 days, with three consecutive doses and an interval of 4 days between the first and last doses, being repeated until the end of each experimental period.  Histopathological analysis shows the infiltration of mononuclear and polymorphonuclear cells into the tumor site of all tumor-bearing mice. Tumor stimulated the influx of polymorphonuclear cells in the early stages, especially at 7 days, while the influx of mononuclear cells was higher in the final stages, at 14 and 30 days in all animals, independently of the treatment with ATF. Treatment of animals for 30 days reduced the tumor weight in 30% but we did not find a correlation with the antitumor antibody production since both treated and untreated mice were able to produce them

    P-MAPA and interleukin-12 reduce cell migration/invasion and attenuate the toll-like receptor-mediated inflammatory response in ovarian cancer SKOV-3 cells : a preliminary study

    Get PDF
    Immunotherapies have emerged as promising complementary treatments for ovarian cancer (OC), but its effective and direct role on OC cells is unclear. This study examined the combinatory effects of the protein aggregate magnesium–ammonium phospholinoleate–palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) on cell migration/invasion, apoptosis, toll-like receptor (TLR)-mediated inflammation, and cytokine/chemokine profile in human OC cell line SKOV-3. P-MAPA and IL-12 showed cancer cell toxicity under low doses after 48 h. Although apoptosis/necrosis and the cell cycle were unchanged by the treatments, P-MAPA enhanced the sensitivity to paclitaxel (PTX) and P-MAPA associated with IL-12 significantly reduced the migratory potential and invasion capacity of SKOV-3 cells. P-MAPA therapy reduced TLR2 immunostaining and the myeloid differentiation factor 88 (MyD88), but not the TLR4 levels. Moreover, the combination of P-MAPA with IL-12 attenuated the levels of MyD88, interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-kB p65). The IL-12 levels were increased and P-MAPA stimulated the secretion of cytokines IL-3, IL-9, IL-10, and chemokines MDC/CCL22 and, regulated on activation, normal T cells expressed and secreted (RANTES)/CCL5. Conversely, combination therapy reduced the levels of IL-3, IL-9, IL-10, MDC/CCL22, and RANTES/CCL5. Collectively, P-MAPA and IL-12 reduce cell dynamics and effectively target the TLR-related downstream molecules, eliciting a protective effect against chemoresistance. P-MAPA also stimulates the secretion of anti-inflammatory molecules, possibly having an immune response in the OC microenvironment2515CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP401040/2016-00708/20182019/00906-6; 2016/03993-9We would like to give a special thanks to Farmabrasilis-Brazil, FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, grant numbers: 2019/00906-6 and 2016/03993-9), CAPES (grant number: 0708/2018), and CNPq (grant number: 401040/2016-0) by providing financial suppor

    Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations

    Get PDF
    The dose-delivery schedule of conventional chemotherapy, which determines its efficacy and toxicity, is based on the maximum tolerated dose. This strategy has lead to cure and disease control in a significant number of patients but is associated with significant short-term and long-term toxicity. Recent data demonstrate that moderately low-dose chemotherapy may be efficiently combined with immunotherapy, particularly with dendritic cell (DC) vaccines, to improve the overall therapeutic efficacy. However, the direct effects of low and ultra-low concentrations on DCs are still unknown. Here we characterized the effects of low noncytotoxic concentrations of different classes of chemotherapeutic agents on human DCs in vitro. DCs treated with antimicrotubule agents vincristine, vinblastine, and paclitaxel or with antimetabolites 5-aza-2-deoxycytidine and methotrexate, showed increased expression of CD83 and CD40 molecules. Expression of CD80 on DCs was also stimulated by vinblastine, paclitaxel, azacytidine, methotrexate, and mitomycin C used in low nontoxic concentrations. Furthermore, 5-aza-2-deoxycytidine, methotrexate, and mitomycin C increased the ability of human DCs to stimulate proliferation of allogeneic T lymphocytes. Thus, our data demonstrate for the first time that in low noncytotoxic concentrations chemotherapeutic agents do not induce apoptosis of DCs, but directly enhance DC maturation and function. This suggests that modulation of human DCs by noncytotoxic concentrations of antineoplastic drugs, i.e. chemomodulation, might represent a novel approach for up-regulation of functional activity of resident DCs in the tumor microenvironment or improving the efficacy of DCs prepared ex vivo for subsequent vaccinations

    Role of natural killer cells in antitumor resistance

    No full text
    Abstract Kaneno R. Role of natural killer cells in antitumor resistance. ARBS Ann Rev Biomed Sci 2005;7:127-48. Natural killer cells constitute a population of lymphocytes able to non-specifically destroy virus-infected and some kinds of tumor cells. Since this lytic activity was shown by non-immunized animals the phenomenon is denominated natural killer (NK) activity and contrasts with specific cytotoxicity performed by cytolytic T lymphocytes (CTLs) because it does not depends on MHC-restricted peptides recognition. In fact, the main feature of most functional receptors of NK cells (NKRs) is their ability to be inhibited by different kinds of class I MHC antigens. In the middle of the 1950s, Burnet & Thomas forged the concept of tumor immunosurveillance and NK cells can be considered one of the main figures in this phenomenon both for effector and regulatory functions. In the present review the early studies on the biology of NK cells were revisited and both their antitumor activity and dependence on the activation by cytokines are discussed

    Role of natural killer cells in antitumor resistance

    No full text
    Natural killer cells constitute a population of lymphocytes able to non-specifically destroy virus-infected and some kinds of tumor cells. Since this lytic activity was shown by non-immunized animals the phenomenon is denominated natural killer (NK) activity and contrasts with specific cytotoxicity performed by cytolytic T lymphocytes (CTLs) because it does not depends on MHC-restricted peptides recognition. In fact, the main feature of most functional receptors of NK cells (NKRs) is their ability to be inhibited by different kinds of class I MHC antigens. In the middle of the 1950's, Burnet & Thomas forged the concept of tumor immunosurveillance and NK cells can be considered one of the main figures in this phenomenon both for effector and regulatory functions. In the present review the early studies on the biology of NK cells were revisited and both their antitumor activity and dependence on the activation by cytokines are discussed

    4th Symposium of Immunology: Tumor Immunobiology

    No full text
    This Abstract book includes all Abstracts of presentations at the 4th Symposion of Immunology: Tumor Immunology, which occurred in the São Paulo State University - UNESP, Bioscience Institute, Botucatu, SP, Brazil, from May 20-22nd, 2011

    Antitumor properties of Ganoderma lucidum polysaccharides and terpenoids

    No full text
    Ganoderma lucidum is an edible medicinal mushroom with immunomodulatory and antitumor properties, which are mainly attributed to polysaccharides and triterpenes that can be isolated from mycelia, fruiting bodies and spores. G. lucidum has been us d in a powdered form, as a medicinal beverage and a nutraceutical food (usually dried). In the present review we report some historical facts and the experimental evidence that polysaccharides and triterpenes obtained from this mushroom present potential antitumor activity. Direct effects on tumor cells include induction of apoptosis and interference in the cell cycle, whereas indirect effects are based on the modulation of immune response, usually impaired by cancer cells. Data indicate that G. lucidum can be used as a complementary tool for treatment of cancer patients. © by São Paulo State University

    Immunomodulatory effects of low dose chemotherapy and perspectives of its combination with immunotherapy

    No full text
    Given that cancer is one of the main causes of death worldwide, many efforts have been directed toward discovering new treatments and approaches to cure or control this group of diseases. Chemotherapy is the main treatment for cancer; however, a conventional schedule based on maximum tolerated dose (MTD) shows several side effects and frequently allows the development of drug resistance. On the other side, low dose chemotherapy involves antiangiogenic and immunomodulatory processes that help host to fight against tumor cells, with lower grade of side effects. In this review, we present evidence that metronomic chemotherapy, based on the frequent administration of low or intermediate doses of chemotherapeutics, can be better than or as efficient as MTD. Finally, we present some data indicating that noncytotoxic concentrations of antineoplastic agents are able to both up-regulate the immune system and increase the susceptibility of tumor cells to cytotoxic T lymphocytes. Taken together, data from the literature provides us with sufficient evidence that low concentrations of selected chemotherapeutic agents, rather than conventional high doses, should be evaluated in combination with immunotherapy. Copyright © 2012 UICC

    Natural killer activity in the experimental privational rickets

    No full text
    To study the 'in vivo' importance of vitamin D on the natural killer (NK) activity, rats were submitted to privational rickets induced by a diet deficient in vitamin D and phosphorus (D-P-). Thirty days after the beginning of treatment the animals showed low body weight, changes in the bone development, and decreased levels of 25-hydroxyvitamin D-3 (25-OH D-3). NK activity, evaluated using a cytotoxicity assay against Cr-51-labeled Yac.1 target cells, was not modified by the rickets-inducing treatment during the first 30 days. Following a long-term treatment (60 days) the rachitic rats (D-P-) exhibited higher NK activity than control animals (D + P +) (P < 0.05). on the other hand, D - P + animals showed higher cytotoxic activity than D - P - and D + P + groups. Feed replacement to the rachitic rats by a complete diet (D - P - /D + P +) led to a partial recuperation of growth, bone development, and 25-OH D-3 scrum. levels. The NK activity was also influenced by vitamin D intake, decreasing after treatment. (C) 2002 Elsevier B.V. B.V. All rights reserved
    corecore