14 research outputs found

    On the motion of a heavy rigid body in an ideal fluid with circulation

    Full text link
    Chaplygin's equations describing the planar motion of a rigid body in an unbounded volume of an ideal fluid involved in a circular flow around the body are considered. Hamiltonian structures, new integrable cases, and partial solutions are revealed, and their stability is examined. The problems of non-integrability of the equations of motion because of a chaotic behavior of the system are discussed.Comment: 25 pages, 4 figure

    The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation

    Get PDF
    We consider the motion of a planar rigid body in a potential flow with circulation and subject to a certain nonholonomic constraint. This model is related to the design of underwater vehicles. The equations of motion admit a reduction to a 2-dimensional nonlinear system, which is integrated explicitly. We show that the reduced system comprises both asymptotic and periodic dynamics separated by a critical value of the energy, and give a complete classification of types of the motion. Then we describe the whole variety of the trajectories of the body on the plane.Comment: 25 pages, 7 figures. This article uses some introductory material from arXiv:1109.321
    corecore