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Abstract. We consider the motion of a planar rigid body in a potential two-
dimensional flow with a circulation and subject to a certain nonholonomic

constraint. This model can be related to the design of underwater vehicles.

The equations of motion admit a reduction to a 2-dimensional nonlinear
system, which is integrated explicitly. We show that the reduced system com-

prises both asymptotic and periodic dynamics separated by a critical value of

the energy, and give a complete classification of types of the motion. Then we
describe the whole variety of the trajectories of the body on the plane.

1. Introduction and outline. In this paper, we consider the motion of a planar
rigid body surrounded by a two-dimensional irrotational perfect fluid. It is assumed
that there is a given amount κ of circulation around the body, and that its motion
is subject to a certain nonholonomic constraint. This model can be regarded as a
first approximation of the action of a large keel or fin attached to the body.

In the absence of circulation this system was termed the hydrodynamic Chaplygin
sleigh in [13], since in the absence of the fluid, the nonholonomic constraint mo-
dels the effect of a sharp blade in the classical Chaplygin sleigh problem [8] which
prevents the sleigh from moving in the lateral direction.

The hydrodynamic Chaplygin sleigh in the presence of circulation was recently
considered in [14], where it was shown that it is an LL system on a certain central
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extension of SE(2) by R3, where the cocycle encodes the effects of the circulation
on the body.

Our model for the nonholonomic constraint, which respects the Lagrange-D’Alem-
bert principle, has been considered in the aerospace engineering community [26],
while robotic models for (partially) submerged vehicles taking into account the
effects of circulation were considered in [18].

History of the Kirchhoff equations. The motion of a rigid body in a potential
fluid in the absence of external forces was first described by Kirchhoff [19]. His
crucial observation was that the effect of the fluid on the body could be described
entirely in terms of the added mass and added inertia terms, which depend on the
geometry of the body only, and can be calculated analytically for a wide class of
body shapes. Kirchhoff’s solution was extended to the case of rigid bodies moving in
potential flow with circulation by, among others, Chaplygin [7] and Lamb [20], who
derived the equations of motion for this system, provided an explicit integration in
terms of elliptic functions, and described qualitative features of the dynamics, such
as periodic motions. In recent years, these ideas have been extended to the case
of rigid bodies interacting with point vortices [29, 3], vortex rings [30] and other
vortical structures, and they have been used to describe underwater vehicles [21]
and the motion of bio-organisms [5, 6]. A comprehensive overview of the history of
these equations can be found in [4].

Contributions of this paper. We show that the hydrodynamic Chaplygin sleigh
with circulation is a new example of a completely integrable nonholonomic system:
we discuss qualitative features of the dynamics, and we explicitly integrate the
reduced equations of motion.

Contents of the paper. In section 2 we recall Kirchhoff’s equations for a planar
rigid body moving in a potential fluid and consider the Chaplygin-Lamb equations
for the motion of the body in the presence of circulation. For the purpose of
completeness, the added masses are computed explicitly for a body of elliptical
shape.

In section 3, the reduced equations of motion on the coalgebra se(2)∗ are written
explicitly in terms of the added masses and the coefficient α that depends on the
position and orientation of the fin (or blade) on the body. Again, for the purpose of
completeness, we give explicit formulas for the parameters that enter the equations
for a body having an elliptical shape. It is shown that the presence of circulation
around the body adds new features to the motion of the hydrodynamic Chaplygin
sleigh, and that there exists a critical value of the kinetic energy of the fluid-body
system that divides periodic from asymptotic behavior. Indeed, for small, subcrit-
ical energy values, the reduced dynamics is periodic. In this case the circulation
effects drive the dynamics (via the so-called Kutta-Zhukowski force). On the con-
trary, if the initial energy is supercritical, then the inertia of the body overcomes
the circulation effects and it evolves asymptotically from one circular motion to
another, where the limit circumferences have different radius. This resembles the
motion of the body in the absence of circulation treated in [13]. Moreover, we iden-
tify 7 regions in the reduced phase space that yield distinct qualitative dynamics of
the motion of the sleigh on the plane.

In section 4 the reduced equations of motion for the hydrodynamic Chaplygin
sleigh with circulation are integrated explicitly for a generic sleigh. The form of
the solution varies according to the energy regime. If the energy is subcritical, the
solution is a quotient of trigonometric functions and we give an explicit expression
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for the period in terms of the energy. We also give a closed expression for the angular
part of the monodromy matrix that is involved in the reconstruction process. This
formula allows us to show that the qualitative behavior of the sleigh on the plane
is very sensitive to initial conditions for energy values that are slightly subcritical.

On the other hand, for the critical value of the energy, the solution of the re-
duced equations is given as a rational function of time. The closed expression for
the solution is used to show that the motion of the sleigh on the plane in this case
is bounded and evolves from one circular motion to another, where the limit cir-
cumferences have equal radius. Finally, the solution of the reduced equations for
supercritical energies is given as a quotient of hyperbolic functions. In this case we
also express the distance between the centers of the limit circumferences in terms
of integrals generalizing the Beta-function.

In Conclusions 5 we motivate a further study of the hydrodynamic Chaplygin
sleigh in the presence of point vortices.

2. Preliminaries: Fluid-structure interactions. In this section, we give an
overview of the Kirchhoff equations describing the dynamics of a rigid body in
potential flow, and of the Chaplygin-Lamb equations dealing with rigid bodies in
the presence of circulation. Most of the material covered in this section can be
found, for instance, in [17] as well as in the classical works of Lamb [20] and Milne-
Thomson [23].

2.1. Kinematics of rigid bodies and ideal fluids. Following Euler’s approach,
consider an orthonormal body frame {E1,E2} that is attached to the body. This
frame is related to a fixed space frame {e1, e2} by a rotation by an angle θ that
specifies the orientation of the two dimensional body at each time. We will denote
by x = (x, y) ∈ R2 the spatial coordinates of the origin of the body frame (see
Figure 1). The configuration of the body at any time is completely determined by
the element g of the Euclidean group SE(2) given by

g =

 cos θ − sin θ x
sin θ cos θ y

0 0 1

 ∈ SE(2).

We will often denote the above element g ∈ SE(2) by g = (Rθ,x) where Rθ ∈
SO(2) is the rotation matrix determined by the angle θ. Let (v1, v2) ∈ R2 be the
linear velocity of the origin of the body frame written in the body coordinates, and
denote by ω = θ̇ the body’s angular velocity. They define the element ξ in the Lie
algebra se(2) given by

ξ = g−1ġ =

 0 −ω v1

ω 0 v2

0 0 0

 ∈ se(2).

Explicitly we have

θ̇ = ω, v1 = ẋ cos θ + ẏ sin θ, v2 = −ẋ sin θ + ẏ cos θ. (1)

For convenience, we will sometimes denote the element ξ ∈ se(2) as the column
vector (ω, v1, v2)T ∈ R3. The Lie algebra commutator takes the form

[ (ω, v1, v2) , (ω′, v′1, v
′
2) ]se(2) = ( 0 , v2ω

′ − ωv′2 , ωv′1 − v1ω
′ ).

The kinetic energy of the body is given by

TB =
1

2

(
(IB +ma2 +mb2)ω2 +m(v2

1 + v2
2)−mbωv1 +maωv2

)
, (2)
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(a) Body frame is aligned with axes of

symmetry of the body

(b) Arbitrary position and orientation

of the body frame.

Figure 1. Two different choices of the body frame for an elliptical
two-dimensional rigid body. In both cases the origin of the body
frame does not coincide with the center of mass.

where m is the mass of the body, (a, b) are body coordinates of the center of mass
(see Figure 1), and IB is the moment of inertia of the body about the center of
mass. It is a positive definite quadratic form on se(2) whose matrix is the body
inertia tensor

IB =

 IB +m(a2 + b2) −mb ma
−mb m 0
ma 0 m

 . (3)

The fluid flow at a given instant. Consider now the motion of the fluid that
surrounds the body. Suppose that at a given instant the body occupies a region
B ⊂ R2. The flow is assumed to take place in the connected unbounded region
U := R2 \ B that is not occupied by the body.

We assume that the flow is potential so the Eulerian velocity of the fluid u can
be written as u = ∇Φ for a fluid potential Φ : U → R. Incompressibility of the fluid
implies that Φ is harmonic,

∇2Φ = 0 on U .
The boundary conditions for Φ come from the following considerations. On the

one hand it is assumed that, up to a purely circulatory flow around the body,
the motion of the fluid is solely due to the motion of the body. This assumption
requires the fluid velocity ∇Φ to vanish at infinity. Secondly, to avoid cavitation
or penetration of the fluid into the body, we require the normal component of the
fluid velocity at a material point p on the boundary of B to agree with the normal
component of the velocity of p. Suppose that the vector (X,Y ) ∈ R2 gives body
coordinates for p. The latter boundary condition is expressed as

∂Φ

∂n

∣∣∣∣
p∈∂B

= (v1 − ωY )n1 + (v2 + ωX)n2,

where n = (n1, n2) is the outward unit normal vector to B at p written in body
coordinates. These conditions determine the flow of the fluid up to a purely cir-
culatory flow around the body that would persist if the body is brought to rest.
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The latter is specified by the value of the circulation κ around the body as we now
discuss.

The potential Φ that satisfies the above boundary value problem can be written
in terms of the body’s velocities v1, v2, ω, in Kirchhoff form:

Φ = v1φ1 + v2φ2 + ωχ+ φ0, (4)

where φi, i = 0, 1, 2, and χ are harmonic functions on U whose gradients vanish at
infinity and satisfy the conditions

∂φi
∂n

∣∣∣∣
∂B

= ni, i = 1, 2,
∂χ

∂n

∣∣∣∣
∂B

= Xn2 − Y n1,
∂φ0

∂n

∣∣∣∣
∂B

= 0.

The potential φ0 is multi-valued and defines the circulatory flow around the body.
The circulation κ of the fluid around the body satisfies

κ =

∮
∂B

u · dl =

∮
∂B
∇φ0 · dl,

and remains constant during the motion. Figure 2 shows the streamline pattern of
the flow determined by the motion of an elliptical body for different values of κ.

(a) κ = 0 (b) κ = 2π (c) κ = 10

Figure 2. Stream line pattern for an ellipse moving on the plane
for different values of the circulation κ. The major and minor
semi-axes of the ellipse are A = 2, B = 1. The velocity of the body
satisfies v1 = v2 = 1 and ω = 5 with respect to a body frame that
is aligned with the principal axes of the ellipse.

Due to the presence of the circulatory motion, the total kinetic energy of the fluid
is infinite. Following [20, 28], one can renormalize it by subtracting the circulatory
part from the velocity potential. The result is given by the function

TF =
ρ

2

∫
U
||∇(Φ− φ0)||2 dA,

where dA is the area element in R2 and ρ is the (constant) fluid density.
By substituting (4) into the above, one can express TF as the quadratic form

TF =
1

2

 2∑
i,j=1

Mij
Fvivj + 2

2∑
i=1

KiFviω + IFω2

 , (5)
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where Mij
F ,KiF , i, j = 1, 2, and IF are certain constants that only depend on the

body shape. Explicitly one has (see [20] for details),

Mij
F = −ρ

∫
∂B
φi
∂φj
∂n

dl = −ρ
∫
∂B
φj
∂φi
∂n

dl, i, j = 1, 2, IF = −ρ
∫
∂B
χ
∂χ

∂n
dl

KiF = −ρ
∫
∂B
φi
∂χ

∂n
dl = −ρ

∫
∂B
χ
∂φi
∂n

dl, i = 1, 2.

These constants are referred to as added masses and are conveniently written in
3× 3 matrix form to define the (symmetric) added inertia tensor :

IF :=

(
IF KF
KTF MF

)
,

that defines TF as a quadratic form on se(2).

Example. For an elliptic rigid body with semi-axes of lengths A > B > 0, the
added masses and moments of inertia take on a particularly simple form. The
kinetic energy of the fluid is given by (see [20])

TF =
ρπ

2

(
B2v2

1 +A2v2
2 +

(A2 −B2)2

4
ω2

)
,

where we have ignored the circulatory motion around the body. The corresponding
added inertia tensor is thus given by

IF = ρπ

 (A2−B2)2

4 0 0
0 B2 0
0 0 A2

 . (6)

We emphasize that this particular form of the added inertia tensor was derived
under the assumption that the body frame is aligned with the symmetry axes of
the ellipse (ν = 0, r = s = 0 in Figure 3 ahead). When this is not the case, the
added mass tensor is more complicated, and in particular need not be diagonal, as
is shown in (12).

2.2. Rigid body motion in potential flow. The total kinetic energy, T , of the
solid-fluid system (excluding the circulatory motion) is the sum of the kinetic energy
TB of the rigid body and the energy TF of the fluid. As both TB and TF are functions
on TSE(2), so is the total energy T . In the absence of external forces or circulation,
the Lagrangian L of the solid-fluid system is just the kinetic energy: L = T , and
in this case, the motion of the rigid body describes a geodesic curve in SE(2) with
respect to the Riemannian metric defined by L.

In view of (2) and (5), we can write the Lagrangian L = TB + TF in terms of
the linear and angular velocities of the body (written in the body frame) and this
expression does not depend on the particular position and orientation of the body,
i.e. is independent of the group element g = (Rθ,x) ∈ SE(2). Thus L is invariant
under the lifted action of left multiplication on SE(2). This symmetry corresponds
to invariance under translations and rotations of the space frame. The reduction of
this symmetry defines Euler-Poincaré equations on the Lie algebra se(2) or, in the
Hamiltonian setting, the Lie-Poisson equations on the coalgebra se(2)∗. The latter
are precisely Kirchhoff’s equations that are explicitly written below.

The invariance of L allows us to define a function L on se(2), called the reduced
Lagrangian. Explicitly, L is given by

L(ξ) =
1

2
ξT Iξ,
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where ξ = (ω, v1, v2)T ∈ se(2) ∼= R3 is the column vector defined in (1), and the
matrix I is the sum of the inertia tensor IB of the rigid body and the tensor of added
masses IF of the fluid: I = IB + IF .

A typical element µ of the coalgebra se∗(2) is represented as a row vector µ =
(k, p1, p2), and we also identify se(2)∗ ∼= R3. The duality pairing between µ and an
element ξ = (ω, v1, v2)T of se(2) is given by

〈µ, ξ〉 = µξ = kω + p1v1 + p2v2.

With this identification, the Legendre transform associated to L is defined as the
mapping

FL : se(2)→ se(2)∗, FL(ξ) = µ = (Iξ)T .
The components of µ = (k, p1, p2) are explicitly given by

k = (IB +m(a2 + b2) + IF )ω + (−mb+K1
F )v1 + (ma+K2

F )v2,

p1 = (−mb+K1
F )ω + (m+M11

F )v1 +M12
F v2,

p2 = (ma+K2
F )ω +M12

F v1 + (m+M22
F )v2.

(7)

In classical hydrodynamics k and (p1, p2) are known as “impulsive pair” and “im-
pulsive force” respectively.

The reduced Hamiltonian H : se(2)∗ → R is given by

H(µ) =
1

2
µI−1µT ,

and the corresponding (minus) Lie-Poisson equations are µ̇ = ad∗I−1µ µ. Written out
in component form, these equations are nothing but the Kirchhoff equations:

k̇ = v2p1 − v1p2,

ṗ1 = ωp2, ṗ2 = −ωp1,
(8)

where the velocities (ω, v1, v2)T and the impulses (k, p1, p2) are related by the Le-
gendre transformation (7). Finally, we remark that the motion of the body in space
can be found from a solution of (8) by solving the reconstruction equations (1).

2.3. Rigid body motion with circulation. In the presence of circulation, the
Kirchhoff equations on se(2)∗ have to be modified to include the Kutta–Zhukowski
force mentioned in the introduction. This is a gyroscopic force, which is proportional
to the circulation κ. In this case, the equations of motion are referred to as the
Chaplygin-Lamb equations, and they are given by

k̇ = v2p1 − v1p2 − ρ(αv1 + βv2),

ṗ1 = ωp2 − κρv2 + ραω,

ṗ2 = −ωp1 + κρv1 + ρβω,

(9)

The constants α and β are proportional to the circulation κ and depend of the
position and orientation of the body axes. They are explicitly given by:

α =

∮
∂B
X∇φ0 · dl, β =

∮
∂B
Y∇φ0 · dl, (10)

where, as before, (X,Y ) are body coordinates for material points in ∂B. The
Chaplygin-Lamb equations were first derived in [7, 20] and are analyzed further in
[4] (see also the references therein). In [32], the Chaplygin-Lamb equations were
derived by considering the interaction between a rigid body and potential flow with
circulation using techniques from symplectic reduction theory.
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One easily verifies that if the center of the body axes is displaced to the point with
body coordinates (r, s), so that the new body coordinates are X̃ = X−r, Ỹ = Y −s,
then the circulation constants relative to the new coordinate axes take the form
α̃ = α−rκ, β̃ = β−sκ. Thus, there is a unique choice of the body axes that makes
these constants vanish. On the other hand, it is also desired to choose the body
axes so that the total inertia tensor I is diagonal. For an asymmetric body, these
two choices are in general incompatible, see e.g. [20].

For our purposes, the choice of body axes will be made to simplify the expression
of the nonholonomic constraint. We therefore consider equations (9) in their full
generality where α, β 6= 0, and I is not diagonal. This contrasts with the treatment
in [32] where it is assumed that α = β = 0 and with [4] where the complementary
assumption, namely that I is diagonal, is made.

It is shown in [14] that equations (9) are of Euler-Poincaré type on a central
extension of SE(2) and thus are Hamiltonian.

3. The hydrodynamic planar Chaplygin sleigh with circulation. We are
now ready to consider the mechanical system of our interest which is the general-
ization of the hydrodynamic version of the Chaplygin sleigh treated in [13] to the
case when there is circulation around the body. Recall that the classical Chaply-
gin sleigh problem (going back to 1911, [8]) describes the motion of a planar rigid
body with a knife edge (a blade) sliding on a horizontal plane. The nonholonomic
constraint forbids the motion in the direction perpendicular to the blade. In its
hydrodynamic version, the body is surrounded by a potential fluid, and the non-
holonomic constraint intents to model the effect of a very effective fin or keel, see
[13].

With the notation from section 2, we let {E1,E2} be a body frame located at
the contact point of the sleigh and the plane, and so that the E1-axis is aligned
with the blade (see Figure 3). The resulting nonholonomic constraint is given by
v2 = 0, and is clearly left invariant under the action of SE(2), as it is solely written
in terms of the velocity of the body as seen in the body frame.

In the absence of constraints, the motion of the body is described by the Chaplygin–
Lamb equations (9). In agreement with the Lagrange-D’Alembert principle, which
states that the constraint forces perform no work during the motion, the equations
of motion for the constrained system are

k̇ = v2p1 − v1p2 − ρ(αv1 + βv2),

ṗ1 = ωp2 − κρv2 + ραω,

ṗ2 = −ωp1 + κρv1 + ρβω + λ,

(11)

where the multiplier λ is determined from the condition v2 = 0. These equations
have been shown to be of Euler-Poincaré-Suslov type on the dual Lie algebra of a
central extension of SE(2) in [14].

The total inertia tensor and the circulation constants α, β. The behavior of
the solutions of (11) depends crucially on the total inertia tensor I = IB + IF that
relates (k, p1, p2) to (ω, v1, v2), and on the value of the circulation constants κ and
α, β.

The expression for IB with respect to the body frame {E1,E2} is given by (3)
where m is the mass of the body, (a, b) are body coordinates of the center of mass,
and I is the moment of inertia of the body about the center of mass. While this
simple expression is independent of the body shape, an explicit expression for the
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tensor of adjoint masses IF can be given explicitly only for rather simple geometries.
A simple yet interesting one is that for an elliptical uniform planar body with the
semi-axes of length A > B > 0. Assume that the origin has coordinates (r, s) with
respect to the frame that is aligned with the principal axes of the ellipse and that
the coordinate axes E1 E2 are not aligned with the axes of the ellipse, forming an
angle υ (measured counter-clockwise), as illustrated in Figure 3.

Figure 3. The elliptical sleigh. The blade makes an angle υ with
the major axis of the ellipse and the contact point has coordinates
(r, s) with respect to the frame that is determined by the principal
axes of the ellipse (in the diagram both r and s are negative).

For this geometry, starting from the formula (6) for the added inertia tensor
given in section 2.1, one can show that

IF = ρπ


F11 F12 F13

F12 B2 cos2 υ +A2 sin2 υ
(
A2−B2

2

)
sin(2υ)

F13

(
A2−B2

2

)
sin(2υ) A2 cos2 υ +B2 sin2 υ

 , (12)

F11 =
(A2 −B2)2

4
+ s2(B2 cos2 υ +A2 sin2 υ) + r2(A2 cos2 υ +B2 sin2 υ)

− rs(A2 −B2) sin(2υ),

F12 = s(B2 cos2 υ +A2 sin2 υ)− 1

2
r(A2 −B2) sin(2υ),

F13 = −r(A2 cos2 υ +B2 sin2 υ) +
1

2
s(A2 −B2) sin(2υ).

The total inertia tensor, I = IB + IF , of the fluid-body system is then given by

I =



IB +m(a2 + b2)
+ρπF11

−mb+ ρπF12 ma+ ρπF13

−mb+ ρπF12
m+ ρπ(B2 cos2 υ

+A2 sin2 υ)
ρπ
(
A2−B2

2

)
sin(2υ)

ma+ ρπF13 ρπ
(
A2−B2

2

)
sin(2υ)

m+ ρπ(A2 cos2 υ
+B2 sin2 υ)


.
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Notice that in the presence of the fluid, if υ 6= nπ2 , n ∈ Z, the coefficient I23 = I32

is non-zero. This can never be the case if the sleigh is moving in vacuum as one
can see from the expression given for IB in (3). The appearance of this non-zero
term leads to interesting dynamics that, in the absence of circulation were studied
in [13]. For the above geometry, the circulation constants α and β defined by (10)
are computed to be:

α = κ(r cos υ + s sin υ), β = κ(−r sin υ + s cos υ).

Notice that, in the presence of circulation, the two constants, α and β, can vanish
simultaneously only if r = s = 0, that is, only if the contact point is at the center
of the ellipse.

In the sequel we assume that the shape of the sleigh is arbitrary convex and that
its center of mass does not necessarily coincide with the origin, which leads to the
general total inertia tensor

I =

 J −L2 L1

−L2 M Z
L1 Z N

 ,

and with arbitrary circulation constants α, β.

Detailed equations of motion. The constraint written in terms of momenta is
v2 = I−1(k, p1, p2)T = 0. Differentiating it and using (11), we find the multiplier

λ = − 1

(I−1)33

I−1

 v2p1 − v1p2 − ρ(αv1 + βv2)
ωp2 − κρv2 + ραω
−ωp1 + κρv1 + ρβω)


3

,

where

I−1 =
1

det(I)

 MN − Z2 ZL1 +NL2 −ZL2 −ML1

ZL1 +NL2 JN − L2
1 −L1L2 − JZ

−ZL2 −ML1 −L1L2 − JZ JM − L2
2

 .

A long but straightforward calculation shows that, by expressing ω, v1 and v2 in
terms of k, p1, p2, substituting into (11), and enforcing the constraint v2 = 0, one
obtains:

ω̇ =
1

D
(L1ω + Zv1 + ρα) (L2ω −Mv1) ,

v̇1 =
1

D
(L1ω + Zv1 + ρα) (Jω − L2v1) ,

(13)

where we set D = det(I)(I−1)33 = MJ − L2
2. Note that D > 0 since I and I−1

are positive definite. Note as well that if α = 0 we recover the system with zero
circulation treated in [13] so from now on we assume α 6= 0.

The full motion of the sleigh on the plane is determined by the reconstruction
equations (1) which, in our case with v2 = 0, reduce to

θ̇ = ω, ẋ = v1 cos θ, ẏ = v1 sin θ.

The reduced energy integral is

H =
1

2

(
Jω2 +Mv2

1 − 2L2ωv1

)
,

and its level sets are ellipses on the (ω v1)-plane.
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As seen from the equations, the straight line ` = {L1ω+Zv1+ρα = 0} consists of
equilibrium points for the system. Each of these equilibria corresponds to a uniform
circular motion on the plane along a circumference of radius

∣∣v1
ω

∣∣.
Notice that if Z = L1 = 0 the line ` of equilibria disappears. In fact, it is

shown in [14] that equations (13) possess an invariant measure only for this choice
of the parameters. In this particular case we obtain simple harmonic motion on the
reduced plane ω, v1.

For the sequel we will assume that Z and L1 are not both zero. We shall see that
initial conditions with high energy yield asymptotic dynamics which is in agreement
with our statement that there is no invariant measure in this case.

A level set of the energy will intersect once, twice or never the line of equilibria
` depending on the value of H. One can show that there are two intersections if
H > h0, only one intersection if H = h0, and zero intersections if H < h0, where

h0 =
1

2
(ρα)2D

E

with E = JZ2 + 2ZL1L2 +ML2
1 > 0.

Hence, the trajectories of (13) are contained in ellipses and they are of three
types:

1. For small values of the energy, 0 ≤ H < h0, we have periodic motion on the
ellipses.

2. For H = h0 we have a homoclinic connection that separates periodic from
asymptotic trajectories.

3. For H > h0 we have heteroclinic connections between the asymptotically
unstable and stable equilibria on `.

We introduce two other special energy values h1, h2 ≥ h0, for which the corre-
sponding energy level intersects the equilibria line ` at the axes ω = 0 and v1 = 0
respectively. Namely,

h1 =
1

2

(ρα)2M

Z2
, h2 =

1

2

(ρα)2J

L2
1

. (14)

The phase portrait is illustrated in Figure 4 (a).

Remark 1. In fact, the reduced system (13) can be checked to be Hamiltonian
with respect to the following Poisson bracket of functions of ω, v1

{F1, F2} := − 1

D
(L1ω + Zv1 + ρα)

(
∂F1

∂ω

∂F2

∂v1
− ∂F1

∂v1

∂F2

∂ω

)
.

The invariant symplectic leaves consist of the semi-planes separated by the equilibria
line ` and the zero-dimensional leaves formed by the points on `.

3.1. The motion of the sleigh on the plane: Qualitative description. As
for the reduced dynamics, the qualitative motion of the sleigh on the plane depends
crucially on the energy value. We distinguish 7 regions on the reduced phase space
as illustrated in Figure 4 (b). The regions are separated by the homoclinic orbit
corresponding to the energy contour H = h0, the two pairs of heteroclinic orbits
corresponding to the energy contour lines H = h1 and H = h2, and the line of
equilibria `. It is thus clear that the regions are flow-invariant. We shall see that
the qualitative motion of the sleigh is different in each region. The number of regions
can change for special parameter values that make any of h0, h1, h2 coincide. We
shall discuss the behavior in the interior of the regions in the generic case where
they are all different and under the assumption that h1 < h2.
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(a) Reduced phase portrait.
The stable and unstable equi-

libria are represented by filled

and empty dots, respectively.

(b) The 7 regions in the reduced
phase space.

Figure 4. Reduced phase portrait and the 7 regions in phase space
(assuming that L1 > 0, α,Z < 0, and h1 < h2).

Motion in region I. For subcritical values of the energy, 0 ≤ H < h0, the reduced
dynamics on (v1, ω) is periodic, but the motion of the sleigh is generally not periodic.
Let T be the (minimal) period of the reduced dynamics that depends on the energy
value H in a way that will be made precise in section 4. Under the shift t→ t+ T
the coordinates of the sleigh undergo the increments

∆x =

∫ T

0

v1(t) cos(θ(t)) dt, ∆y =

∫ T

0

v1(t) sin(θ(t)) dt,

∆θ =

∫ T

0

ω(t) dt.

(15)

These quantities completely determine the type of motion of the sleigh.

Theorem 3.1. Let T be the period of a periodic solution to the reduced system (13)
with H < h0, and let ∆x = (∆x,∆y) and ∆θ be defined by (15). Then, the motion
of the sleigh on the plane is

1. T -periodic if ∆θ
2π ∈ Z and ∆x = 0.

2. Unbounded if ∆θ
2π ∈ Z and ∆x 6= 0.

3. Contained in a circle or an annulus if ∆θ
2π /∈ Z, where the motion

(a) is periodic of period qT if ∆θ
2π is a rational number written in terms of

integers p, q as ∆θ
2π = p

q in irreducible form,

(b) fills up the circle or annulus densely if ∆θ
2π is irrational.

Moreover, the above types of the motion depend only on the energy value H. In
particular, they are independent of the initial configuration of the sleigh.
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Proof. Assume without loss of generality that at t = 0 the body and the space
reference frames coincide. Then θ(0) = 0, and the element

S =

 cos(∆θ) − sin(∆θ) ∆x
sin(∆θ) cos(∆θ) ∆y

0 0 1

 ∈ SE(2)

describes the shift in both reference frames after one period. Then the elements

gn =

 cos θ(nT ) − sin θ(nT ) x(nT )
sin θ(nT ) cos θ(nT ) y(nT )

0 0 1

 ∈ SE(2), n ∈ Z

describing the subsequent positions of the sleigh in the space frame, are the right
translations on SE(2):

gn+1 = gnS.

Following theorems of kinematics, each generic transformation of that kind is a rigid
rotation about a fixed point Q on the plane (x, y) by the angle ∆θ. This happens
when ∆θ

2π /∈ Z. Then the trajectory of the contact point lies inside of an annulus or

a circle with the center Q. The trajectory is periodic iff ∆θ
2π is a rational number,

otherwise it fills the domain densely.
In the special case ∆θ

2π ∈ Z the transformation gn → gn+1 is a parallel translation
(if ∆x 6= 0), which is obviously unbounded, or is the identity (when ∆x = 0), then
the trajectory is periodic. This leads to the items of the theorem.

Finally note that the components of S depend only on the energy value and not
on the particular initial conditions.

This result, that we have proved in an elementary way, is in fact a particular
case of a general theory of reconstruction of periodic orbits. This theory was first
developed in [10] when the symmetry group is compact, and in [2] in the non-
compact case (as is the case of SE(2)). Similar constructions, in the context of
nonholonomic mechanics, are given in [16, 33] and in [9] where the global description
of the invariant manifolds in the unreduced space is considered. The relationship
between our proof and these works is made clear by noticing that the matrix S given
above is the (right) monodromy (or phase) matrix of the periodic linear system
defined by the reconstruction equations.

The types of motion indicated in items 2 and 3 of the above theorem are illus-
trated in Figure 5. The generic behavior of the sleigh corresponds to item 3 (b)
(Figure 5 (c)).

Equation (19) in section 4 below gives the explicit dependence of ∆θ on the
energy.

Now notice that in the case h ≥ h0, the equilibrium points (ω, v1) on the line
` = {L1ω+Zv1+ρα = 0} correspond to circular motion of the sleigh in the direction
determined by the sign of ω (clockwise if ω > 0 and anti-clockwise if ω < 0). The
circles described by the contact point have radii |v1/ω|.

The exceptional cases when ω = 0 or v1 = 0 respectively correspond to motion
along a straight line or to a spinning motion of the sleigh about the contact point
that remains fixed. These cases correspond respectively to the energy values h1 and
h2. The motion of the sleigh on the plane when the energy attains the critical value
h0 will be discussed in section 4.
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(a) Trajectory of the

contact point with
∆θ = −4π, and

∆x,∆y 6= 0 (unboun-

ded motion).

(b) Trajectory of the con-

tact point with ∆θ =
− 11π

7
(periodic motion in

an annulus).

(c) Trajectory of the con-

tact point with ∆θ =
− eπ

2
for a finite time (the

trajectory fills the annu-
lus densely).

Figure 5. Trajectory of the sleigh on the plane in region I (H <
h0) for different values of ∆θ.

Motion in region II. The sleigh evolves asymptotically from one circular mo-
tion to another. The limit circles have different radii. Both of them are traversed
counterclockwise (at the limit points in the region one has ω > 0). Moreover, the
trajectory of the point of contact has two cusps corresponding to the two intersec-
tions with the axis v1 = 0 on Figure 4.

Motion in region III. The same behavior as in Region II, however, this time the
trajectory has no cusps (since v1 never vanishes).

Motion in region IV. The sleigh again evolves asymptotically from one circular
motion to another. The limit circles have different radii and are traversed in opposite
directions. The trajectory of the contact point has two cusps corresponding to the
two intersections of (v1(t), ω(t)) with the axis v1 = 0 on the phase plane (v1, ω).

Motion in region V. The same behavior as in Region IV, but the trajectory has
no cusps since v1 never vanishes.

Motion in regions VI and VII. The same behavior as in Region IV, however
the trajectories have exactly one cusp corresponding to the intersection of the axis
v1 = 0.

(a) Region II. (b) Region III.

Figure 6. Trajectories of the sleigh for initial conditions in regions
II and III.
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(a) Region IV. (b) Region V.

Figure 7. Trajectories of the sleigh for initial conditions in regions
IV and V.

(a) Region VI. (b) Region VII.

Figure 8. The trajectories for initial conditions in regions VI, and VII.

Thus we see that the qualitative behavior of the motion of the sleigh on the
plane can be sensitive to initial conditions. This contrasts with the properties of
other completely solvable classical nonholonomic systems like the Suslov problem
or the hydrodynamic Chaplygin sleigh without circulation. For these systems one
can obtain formulas for the parameters that determine the long term behavior of
the dynamics, and such formulas are independent of the energy (see [13, 12]).

At the physical level, the motion of the sleigh can be understood as an interplay
of two effects, the circulation of the fluid around the body, and the inertia of the
body. For low energies (H < h0) the dynamics are driven by the circulation and
produce periodic motion in the reduced space. For high energies (H > h0) the
inertia of the body takes over and the asymptotic dynamics of the body on the
plane resemble the motion of the hydrodynamic Chaplygin sleigh in the absence of
circulation considered in [13].

We finally stress that all of the above types of motion also appear in the classical
Appel–Korteweg problem on the rolling of a non-vertical disc. Namely the trajec-
tories of the contact point of the disc admit the same classification (see [1, 22, 11]).

4. Explicit solution of the reduced system in se(2)∗. We will only treat the
case L2 = 0 when the system (13) takes the form

ω̇ =
1

D
(L1ω + Zv1 + ρα) (−Mv1) ,

v̇1 =
1

D
(L1ω + Zv1 + ρα) (Jω) ,

(16)

with D = MJ . The energy takes the diagonal form H = 1
2 (Jω2 + Mv2

1). The
general case can be reduced to this one via an invertible linear change of variables
as the following proposition shows.
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Proposition 1. There exists a 2× 2 rotation matrix P ∈ SO(2) such that if ω and

v1 satisfy (13) then (ω̃, ṽ1)T := P (ω, v1)T satisfy (16) with coefficients L̃1, Z̃, M̃ , J̃ ,

where J̃ , M̃ > 0 satisfy M̃J̃ = D, and (L̃1, Z̃)T := P (L1, Z)T .

Proof. Define the restricted inertia tensor Ic by

Ic :=

(
J −L2

−L2 M

)
.

Since Ic is symmetric and positive definite, there exists P ∈ SO(2) such that P Ic PT
is a diagonal matrix whose entries J̃ , M̃ > 0 are the eigenvalues of Ic and satisfy
M̃J̃ = det Ic = D.

Equations (13) can be written in vector form as

d

dt

(
ω
v1

)
=

1

D

(〈(
ω
v1

)
,

(
L1

Z

)〉
+ ρα

)(
0 −1
1 0

)
Ic
(

ω
v1

)
,

where 〈·, ·〉 denotes the usual inner product in R2. Defining (ω̃, ṽ1)T := P (ω, v1)T ,
the above equations are equivalent to

d

dt

(
ω̃
ṽ1

)
=

1

D

(〈(
ω̃
ṽ1

)
, P

(
L1

Z

)〉
+ ρα

)
P

(
0 −1
1 0

)
Ic PT

(
ω̃
ṽ1

)
.

The result now follows by noticing that

P

(
0 −1
1 0

)
Ic PT =

(
0 −1
1 0

)
P Ic PT =

(
0 −1
1 0

)(
J̃ 0

0 M̃

)
where we have used that P ∈ SO(2) in the first equality.

The general solution of the system (16) can be obtained by parameterizing level
set H = h of the energy function H = 1

2 (Jω2 +Mv2
1) as

ω(t) =

√
2h

J

(
2f(t)

f(t)2 + 1

)
, v1(t) = ±

√
2h

M

(
f(t)2 − 1

f(t)2 + 1

)
.

Substitution into (16) gives a separable equation for f(t) of the form

ḟ(t) = Af(t)2 + 2Bf(t) + C, (17)

where the coefficients A,B,C, depend on the entries of the inertia tensor I, on ρα,
and also on the energy value h. The form of the solutions for the above equation
depends on the sign of the discriminant ∆ := B2−AC. A long but straightforward
calculation shows that

∆ =
1

2

(
E

D2

)
(h− h0),

and hence sign(∆) = sign(h−h0). Therefore the form of the solution varies depend-
ing on whether the energy h is higher than, smaller than or equal to the critical
energy level h0. We will now give the explicit formulae for ω and v1 in these three
cases. To write our formulas in a compact and unified manner we introduce the
coefficients:

γ :=
√
|∆| =

√
E√

2D

√
|h− h0|, σ := sign(αZ), K1 :=

√
E

Z
√
J

(√
|h− h0|√
h+
√
h1

)
,

K2 := −σL1

√
M

Z
√
J

( √
h

√
h1 +

√
h

)
, K3 := −

√
2M
√
J

Z

(
1√

h0 +
√
h1

)
,

(18)
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where h1 is given by (14), and we assume that the constants L1, Z, are non-zero.
Notice that γ,K1, and K2 depend on the energy value h.

The solution for 0 < h < h0. In this case the discriminant ∆ < 0 and f(t) =
1
A (γ tan(γt) − B) is a solution of (17). After some algebra this gives the following
solution of (16):

ω(t) = 2

√
2h

J

(
K2 cos2(γt) +K1 sin(γt) cos(γt)

(1 +K2
2 ) cos2(γt) + 2K1K2 sin(γt) cos(γt) +K2

1 sin2(γt)

)
,

v1(t) = σ

√
2h

M

(
(K2

2 − 1) cos2(γt) + 2K1K2 sin(γt) cos(γt) +K2
1 sin2(γt)

(1 +K2
2 ) cos2(γt) + 2K1K2 sin(γt) cos(γt) +K2

1 sin2(γt)

)
.

We immediately obtain the following formula for the period T of the solutions:

T =
π

γ
=

√
2πD√

E
√
h0 − h

.

Notice that T →∞ as h→ h0 from the left as expected.

We can also obtain a closed expression for the increment ∆θ =
∫ T

0
ω(t) dt. For

this matter we note that a primitive of ω(t) is given by (see e.g. [15]):

θ(t) =
2

γ

√
2h

J

(
θ1(t) + θ2(t) + θ3(t)

4K2
1K

2
2 + (1 +K2

2 −K2
1 )2

)
,

with

θ1(t) = K2(1 +K2
1 +K2

2 )γt,

θ2(t) =
K1

2
(K2

1 +K2
2 − 1)

· ln((1 +K2
2 ) cos2(γt) + 2K1K2 sin(γt) cos(γt) +K2

1 sin2(γt)),

θ3(t) = −2K1K2 arctan(K1 tan(γt) +K2).

Therefore, taking into account the change of branch in the expression for θ3(t), we
find that, under the above assumption L2 = 0,

∆θ = θ(π/γ)− θ(0) =
2π

γ

√
2h

J

(
K2(1 +K2

1 +K2
2 ) + 2K1K2

4K2
1K

2
2 + (1 +K2

2 −K2
1 )2

)
. (19)

(In the general case L2 6= 0 due to Proposition 4.1, ∆θ will be a linear combination

of (19) and of the integral
∫ T

0
v1(t) dt.)

In particular notice that ∆θ = O((h0 − h)−1/2) as h → h0 from the left. This
implies that the behavior of the sleigh on the plane is extremely sensitive to the
energy values that are slightly smaller than h0. Namely, we have

Proposition 2. For any δ > 0 there exists a strictly increasing sequence of energy

values {h(p)
k }k∈N satisfying h0 − δ < h

(p)
k < h0, for which the motion of the contact

point in the plane is periodic. Similarly, there exists an increasing sequence of

energy values {h(u)
k }k∈N (respectively, {h(q)

k }k∈N) satisfying h0 − δ < h
(u)
k < h0

(respectively, h0 − δ < h
(q)
k < h0), such that the motion of the sleigh is unbounded

(respectively, quasi-periodic).

The proof follows from the results of Theorem 3.1 and the fact that |∆θ| → ∞
as h→ h0 from the left.
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The solution for h = h0. In this case the discriminant ∆ = 0, and (17) has the
solution f(t) = − 1

A ( 1
t +B). After some algebra this gives the following solution of

(16):

ω(t) = 2

√
2h0

J

K3t+K2t
2

(1 +K2
2 )t2 + 2K3K2t+K2

3

,

v1(t) = σ

√
2h0

M

(K2
2 − 1)t2 + 2K3K2t+K2

3

(1 +K2
2 )t2 + 2K3K2t+K2

3

,

where it is understood that h = h0 in the expression for K2.
To analyze the trajectory of the contact point of the sleigh, consider the particular

solution ω(t − t0), v1(t − t0) with t0 = −K2K3

1+K2
2

. In order to keep the notation as

simple as possible, we will also denote this solution by ω(t), v1(t). We have

ω(t) = 2

√
2h0

J

(
C2

1K2t
2 −K3C1C2t−K2K

2
3

C1(C2
1 t

2 +K2
3 )

)
,

v1(t) = σ

√
2h0

M

(
C2

1C2t
2 + 4K3K2C1t−K2

3C2

C1(C2
1 t

2 +K2
3 )

)
,

where C1 = 1 +K2
2 and C2 = K2

2 − 1.
Notice that

lim
t→±∞

v1

ω
=

1

2
σ

√
J

M

C2

K2
:= R,

hence the limit motions of the sleigh are along circles of the same radius |R|. More-
over, the circles are traversed in the same direction as both ω(t) and v1(t) have the
same limits as t→ ±∞.

Proposition 3. The motion of the contact point in the plane in the case h = h0 is
bounded.

Proof. It is sufficient to show that the distance between the centers of the limit
circumferences is finite. The centers coincide with limit positions of the point C of
the sleigh with body coordinates (0, R). Indeed, the components of the velocity of
this point are given by

ẋC = VC(t) cos(θ(t)), ẏC = VC(t) sin(θ(t)),

where

VC(t) = v1(t)−Rω(t) = σ

√
2h0

M

K3(4K2
2 + C2

2 )t

K2(C2
1 t

2 +K2
3 )
,

that goes to zero as t → ±∞. Therefore, the vector that connects the two centers
has the components

∆xC =

∫ ∞
−∞

VC(t) cos(θ(t)) dt, ∆yC =

∫ ∞
−∞

VC(t) sin(θ(t)) dt,

where θ(t) = θ1(t) + θ2(t) + θ3(t) with

θ1(t) = 2

√
2h0

J

K2t

C1
, θ2(t) = −

√
2h0

J

K3C2

C2
1

ln(C2
1 t

2 +K2
3 ) + θ0,

θ3(t) = −4

√
2h0

J

K3K2

C2
1

arctan

(
C1t

K3

)
,
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θ0 being an integration constant. Notice that θ1, θ3 and VC are odd functions of t
whereas θ2 is even. Therefore, using basic trigonometric identities, we get:

∆xC = −
∫ ∞
−∞

VC sin(θ1) sin(θ2) cos(θ3) dt−
∫ ∞
−∞

VC cos(θ1) sin(θ2) sin(θ3) dt.

The above integrals can be shown to converge using integration by parts. For
example, using that sin(θ1) = d

dt (−C3 cos(θ1)) for a certain constant C3, the first
integral rereads∫ ∞

−∞
VC sin(θ1) sin(θ2) cos(θ3) dt = −C3 cos(θ1)VC sin(θ2) cos(θ3)

∣∣∞
−∞

+ C3

∫ ∞
−∞

cos(θ1)k(t) dt,

where k(t) = d
dt (VC sin(θ2) cos(θ3)). It is seen that the two terms on the right

are finite. Namely, the limits of the boundary terms are zero since VC → 0 as
t→ ±∞. Next, the integral is absolutely convergent since |k(t)| can be dominated
by a function that decays as 1/t2 for large |t|.

The proof of the finiteness of ∆yC is analogous.

The solution for h > h0. In this case the discriminant ∆ > 0 and two solutions
of (17) should be considered. These are f1(t) = 1

C (−γ tanh(γt) − B) and f2(t) =
1
C (−γ coth(γt) − B), and correspond to the two heteroclinic orbits that, together
with the equilibria, make up the energy level line.

Starting out with f1(t) we find the solution to (16)

ω(t) = 2

√
2h

J

(
K2 cosh2(γt)−K1 sinh(γt) cosh(γt)

(1 +K2
2 ) cosh2(γt)− 2K1K2 sinh(γt) cosh(γt) +K2

1 sinh2(γt)

)
,

v1(t) = σ

√
2h

M

(
(K2

2 − 1) cosh2(γt)− 2K1K2 sinh(γt) cosh(γt) +K2
1 sinh2(γt)

(1 +K2
2 ) cosh2(γt)− 2K1K2 sinh(γt) cosh(γt) +K2

1 sinh2(γt)

)
,

(20)

which is contained in the semi-plane L1ω+Zv1 +ρα > 0. Whereas considering f2(t)
one finds the following solution to (16)

ω(t) = 2

√
2h

J

(
K2 sinh2(γt)−K1 sinh(γt) cosh(γt)

(1 +K2
2 ) sinh2(γt)− 2K1K2 sinh(γt) cosh(γt) +K2

1 cosh2(γt)

)
,

v1(t) = σ

√
2h

M

(
(K2

2 − 1) sinh2(γt)− 2K1K2 sinh(γt) cosh(γt) +K2
1 cosh2(γt)

(1 +K2
2 ) sinh2(γt)− 2K1K2 sinh(γt) cosh(γt) +K2

1 cosh2(γt)

)
,

(21)

that is contained in the semi-plane L1ω + Zv1 + ρα < 0.
For the sequel, we only consider the branch of the solution θ(t), x(t), y(t) corre-

sponding to (20). The treatment of the case corresponding to the other solution
(21) can be done in a similar way.

Integrating ω(t) and denoting κ = 2
√

2h/J , we get

θ(t) =

∫
ω dt = θ1 + θ2 + θ3,

θ1 = κ
K1 +K2

(K1 +K2)2 + 1
t,



4036 YURI N. FEDOROV, LUIS C. GARCÍA-NARANJO AND JORIS VANKERSCHAVER

θ2 = κ
K1

2γ

K2
2 −K2

1 − 1

[(K1 +K2)2 + 1] · [(K1 −K2)2 + 1]

· ln
(
[(K1 −K2)2 + 1]e4γt + [2(K2

2 −K2
1 + 1)]e2γt + [(K1 +K2)2 + 1]

)
,

θ3 = κ
2K1K2

γ[(K1 +K2)2 + 1] · [(K1 −K2)2 + 1]

· arctan

(
1

2K1
[(K1 −K2)2 + 1]e2γt +

1

2K1
[K2

2 −K2
1 + 1]

)
.

We will assume that σ = sign(αZ) = 1 in the expression for v1. Note that the
radii of the limit circles are different:

r± = lim
t→±∞

v1

ω
=

1

2

√
J

M

(K2 ∓K1)2 − 1

K2 ∓K1
.

Then, to evaluate the distance between their centers, introduce the “floating radius”

ρ(t) =
r+e

γt + r−e
−γt

eγt + e−γt
, so that ρ(±∞) = r±,

and the floating point of the sleigh whose coordinates in the body fixed frame are
(0, ρ(t)). The limit positions of this point coincide with the centers of the limit
circumferences. The components of the velocity of the point are

ẋρ = Vρ(t) cos(θ(t)), ẏρ = Vρ(t) sin(θ(t)),

where

Vρ(t) = v1(t)− ρ(t)ω(t) =

√
2h

M

4K2
1

K2
2 −K2

1

· 1

[(K1 −K2)2 + 1]e2γt + 2[K2
2 −K2

1 − 1] + [(K1 +K2)2 + 1]e−2γt
,

Now introduce the new variable

z =
1

2K1
[(K1 −K2)2 + 1]e2γt,

and the constant

k := K2
2 −K2

1 + 1 =
Eh0 + JZ2(2

√
hh1 + h1)

(
√
h1 +

√
h)2

. (22)

Then

e2γt =
2K1z

(K1 −K2)2 + 1
,

dz =
γ

K1
[(K1 −K2)2 + 1]e2γt dt = 2γz dt, (23)

z2 +
k

K1
z +

k2

4K2
1

+ 1 =
(K1 −K2)2 + 1

4K2
1

(
[(K1 −K2)2 + 1]e4γt

+2(K2
2 −K2

1 + 1)e2γt + (K1 +K2)2 + 1
)
.
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and, therefore,

θ1 = κ
K1 +K2

(K1 +K2)2 + 1

1

2γ
ln

(
2K1z

(K1 −K2)2 + 1

)
,

θ2 = κ
K1

2γ

K2
2 −K2

1 − 1

[(K1 +K2)2 + 1] · [(K1 −K2)2 + 1]
ln

(
z2 +

k

K1
z +

k2

4K2
1

+ 1

)
(up to an additive constant),

θ3 = κ
2K1K2

γ[(K1 +K2)2 + 1] · [(K1 −K2)2 + 1]
arctan

(
z +

k

2K1

)
,

Vρ =

√
2h

M

[(K1 −K2)2 + 1]

K2
2 −K2

1

1

z2 + k
K1
z + k2

4K2
1

+ 1
e2γt

=

√
2h

M

1

z2 + k
K1
z + k2

4K2
1

+ 1

2K1z

K2
2 −K2

1

.

The components of the vector of the distance between the centers of the limit
circles are

∆xρ =

∫ ∞
−∞

Vρ cos(θ(t)) dt, ∆yρ =

∫ ∞
−∞

Vρ sin(θ(t)) dt

Then, in view of (23),

∆xρ =

√
2h

M

2K1

K2
2 −K2

1

∫ ∞
−∞

z

z2 + K3

K1
z +

K2
3

4K2
1

+ 1
cos(θ(t)) dt

=

√
2h

M

K1

γ(K2
2 −K2

1 )

∫ ∞
0

cos θ

z2 + K3

K1
z +

K2
3

4K2
1

+ 1
dz,

and similarly for ∆yρ.
Under the next substitution z = tanu the above integrals yield

∆xρ ± i∆yρ =

√
2h/M K1

γ(K2
2 −K2

1 )
a±ia10 I±, (24)

I± =

∫ π/2

0

(sinu)±ia1(cosu)∓i(a1+2a2) exp
(
±ia3 arctan

(
tanu+ k

2K1

))
(

1 + k
2K1

sin(2u) + k2

4K2
1

cos2 u
)1∓ia2 du,

a0 =
2K1

(K1 −K2)2 + 1
, a1 =

κ(K1 +K2)

2γ((K1 +K2)2 + 1)
,

a2 =
κK1(K2

2 −K2
1 − 1)

2((K1 +K2)2 + 1)((K1 −K2)2 + 1)
,

a3 =
2κK1K2

γ((K1 +K2)2 + 1)((K1 −K2)2 + 1)
.

The latter integrals represent a generalization of the classical Beta-function (see,
e.g., [15]). Their product gives the square of the distance between the centers.

Remark 2. We could not calculate the above integrals explicitly. Note, however,
that in the limit h → ∞, when the energy prevails over the circulation effect, due
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to (18) and (22), the integrals (24) reduce to

∆xρ ± i∆yρ = −2
√
D

Z
c∓iζ0

∫ π/2

0

(sinu)∓iζ(cosu)∓iζ (cos(2c1 u)∓ i sin(2c1 u)) du ,

ζ =
DZ

E
, c1 =

√
DML1

E
, c0 =

Z
√
D√

EM + L1M
.

Note that the same reduction holds in case of zero circulation (h0 = h1 = 0 in (22)
implies k = 0), which was studied in [13]. As was shown there, the product of the
above integrals gives the square of the distance between the centers in the following
closed form

(∆xρ)
2 + (∆yρ)

2 =
2πD

Z2

(
ζ

c21 + ζ2

)(
cosh(ζπ)− cos(c1π)

sinh(ζπ)

)
.

5. Conclusions and further work. We presented one of the first examples of
nonholonomic hydrodynamical systems, which is related to the design of underwater
vehicles. The nonholonomic constraint can be interpreted as a first approximation
model for a fin. From the mathematical point of view, our example is remarkable
since both asymptotic and periodic dynamics coexist in the reduced phase space.
It has been observed that the value of the energy is a crucial parameter in the
qualitative behavior of the body on the plane. To our knowledge, this type of
phenomenon is quite rare in nonholonomic dynamics. (A similar behavior occurs in
the classical Appel–Korteweg problem on the rolling disc [1, 11].)

For the future, we intend to study the motion of the hydrodynamic Chaplygin
sleigh coupled to point vortices in the fluid [24]. The equations of motion for in-
teracting point vortices and rigid bodies (without nonholonomic constraints) were
recently derived in [29, 3] and since then there have been significant efforts towards
discerning integrability and chaoticity [25, 27] and towards uncovering the underly-
ing geometry of these models [31]. We plan to couple the nonholonomic Chaplygin
sleigh with one or several point vortices in the flow, taking these models as our next
starting point.
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[14] L. C. Garćıa-Naranjo and J. Vankerschaver, Nonholonomic LL systems on central extensions

and the hydrodynamic Chaplygin sleigh with circulation, preprint, arXiv:1109.3210v2.

[15] I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series, and Products,” 7th edition,
Elsevier/Academic Press, Amsterdam, 2007.

[16] J. Hermans, A symmetric sphere rolling on a surface, Nonlinearity, 8 (1995), 493–515.

[17] E. Kanso, J. E. Marsden, C. W. Rowley and J. B. Melli-Huber, Locomotion of articulated
bodies in a perfect fluid J. Nonlinear Sci., 15 (2005), 255–289.

[18] S. Kelly and R. Hukkeri, Mechanics, dynamics, and control of a single-input aquatic vehicle

with variable coefficient of lift, IEEE Transactions on Robotics, 22 (2006), 1254–1264.
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