546 research outputs found

    Sorting nexin 5 mediates virus-induced autophagy and immunity

    Get PDF

    Small-molecule control of cytokine function: new opportunities for treating immune disorders

    Get PDF
    Manipulating cytokine function with protein-based drugs has proven effective for treating a wide variety of autoimmune and autoinflammatory disorders. However, the limited ability of protein-based drugs to modulate intracellular targets, including many implicated by studies of the genetics and physiology of these diseases, and to coordinately neutralize redundant inflammatory cytokines, suggests an important and complementary role for small molecules in immunomodulatory drug development. The recent clinical approval of Janus kinase and phosphodiesterase inhibitors, along with emerging evidence from other compound classes, firmly establish small molecules as effective tools for modulating therapeutically relevant proteins that give rise to aberrant cytokine signaling or mediate its downstream consequences

    ATG5 regulates plasma cell differentiation

    Get PDF
    Autophagy is a conserved homeostatic process in which cytoplasmic contents are degraded and recycled. Two ubiquitin-like conjugation pathways are required for the generation of autophagosomes, and ATG5 is necessary for both of these processes. Studies of mice deficient in ATG5 reveal a key role for autophagy in T lymphocyte function, as well as in B cell development and B-1a B cell maintenance. However, the role of autophagy genes in B cell function and antibody production has not been described. Using mice in which Atg5 is conditionally deleted in B lymphocytes, we showed here that this autophagy gene is essential for plasma cell homeostasis. In the absence of B cell ATG5 expression, antibody responses were significantly diminished during antigen-specific immunization, parasitic infection and mucosal inflammation. Atg5-deficient B cells maintained the ability to produce immunoglobulin and undergo class-switch recombination, yet had impaired SDC1 expression, significantly decreased antibody secretion in response to toll-like receptor ligands, and an inability to upregulate plasma cell transcription factors. These results build upon previous data demonstrating a role for ATG5 in early B cell development, illustrating its importance in late B cell activation and subsequent plasma cell differentiation

    The T300A Crohn’s disease risk polymorphism impairs function of the WD40 domain of ATG16L1

    Get PDF
    Article number: 11821 (2016)[EN]A coding polymorphism of human ATG16L1 (rs2241880; T300A) increases the risk of Crohn’s disease and it has been shown to enhance susceptibility of ATG16L1 to caspase cleavage. Here we show that T300A also alters the ability of the C-terminal WD40-repeat domain of ATG16L1 to interact with an amino acid motif that recognizes this region. Such alteration impairs the unconventional autophagic activity of TMEM59, a transmembrane protein that contains the WD40 domain-binding motif, and disrupts its normal intracellular trafficking and its ability to engage ATG16L1 in response to bacterial infection. TMEM59-induced autophagy is blunted in cells expressing the fragments generated by caspase processing of the ATG16L1-T300A risk allele, whereas canonical autophagy remains unaffected. These results suggest that the T300A polymorphism alters the function of motif-containing molecules that engage ATG16L1 through the WD40 domain, either by influencing this interaction under non-stressful conditions or by inhibiting their downstream autophagic signalling after caspase-mediated cleavage

    A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-Îł-activated human cells

    Get PDF
    ABSTRACT A core set of autophagy proteins is required for gamma interferon (IFN-Îł)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-Îł-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-Îł-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-Îł-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth

    RNF166 Determines Recruitment of Adaptor Proteins during Antibacterial Autophagy

    Get PDF
    Xenophagy is a form of selective autophagy that involves the targeting and elimination of intracellular pathogens through several recognition, recruitment, and ubiquitination events. E3 ubiquitin ligases control substrate selectivity in the ubiquitination cascade; however, systematic approaches to map the role of E3 ligases in antibacterial autophagy have been lacking. We screened more than 600 putative human E3 ligases, identifying E3 ligases that are required for adaptor protein recruitment and LC3-bacteria colocalization, critical steps in antibacterial autophagy. An unbiased informatics approach pinpointed RNF166 as a key gene that interacts with the autophagy network and controls the recruitment of ubiquitin as well as the autophagy adaptors p62 and NDP52 to bacteria. Mechanistic studies demonstrated that RNF166 catalyzes K29- and K33-linked polyubiquitination of p62 at residues K91 and K189. Thus, our study expands the catalog of E3 ligases that mediate antibacterial autophagy and identifies a critical role for RNF166 in this process.Leona M. and Harry B. Helmsley Charitable Trust (2014PG-IBD016)National Institutes of Health (U.S.) (R01DK097485)National Institutes of Health (U.S.) (U19AI109725)National Institutes of Health (U.S.) (P30DK043351

    Fruit and vegetable consumption is associated with lower prevalence of asymptomatic diverticulosis: a cross-sectional colonoscopy-based study.

    Get PDF
    BACKGROUND: Previous studies of the relationship between dietary factors and risk of diverticulosis have yielded inconsistent results. We therefore sought to investigate the association between consumption of fruit and vegetables and prevalent diverticulosis. METHODS: Our study population included participants in the Gastrointestinal Disease and Endoscopy Registry (GIDER), a colonoscopy-based longitudinal cohort at the Massachusetts General Hospital, who provided comprehensive information on dietary intake and lifestyle factors using validated questionnaires prior to colonoscopy. Information on presence and location of diverticula was obtained from the endoscopist at the end of each procedure. We used Poisson regression modeling to calculate the prevalence ratios (PRs) and 95% confidence intervals (CIs). RESULTS: Among 549 participants with a mean age of 61 years enrolled in GIDER, we confirmed diverticulosis in 245 (44.6%). The prevalence of diverticulosis appeared to decrease with higher consumption of fruit and vegetables (P CONCLUSION: In a colonoscopy-based longitudinal cohort study, we show that higher consumption of fruit and vegetables is associated with lower risk of prevalent diverticulosis
    • …
    corecore