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Ornithine decarboxylase supports ILC3 responses in infectious
and autoimmune colitis through positive regulation of IL-22
transcription
Vincent Penga,1, Siyan Caoa,b,1 , Tihana Trsana, Jennifer K. Bandoa,2 , Julian Avila-Pachecoc, John L. Clevelandd, Clary Clishc, Ramnik J. Xavierc,e,
and Marco Colonnaa,3

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2019.
Contributed by Marco Colonna; received September 2, 2022; accepted September 27, 2022; reviewed by Adelheid Cerwenka and Giuseppe Scium�e

Group 3 innate lymphoid cells (ILC3s) are RORγT+ lymphocytes that are predomi-
nately enriched in mucosal tissues and produce IL-22 and IL-17A. They are the innate
counterparts of Th17 cells. While Th17 lymphocytes utilize unique metabolic pathways
in their differentiation program, it is unknown whether ILC3s make similar metabolic
adaptations. We employed single-cell RNA sequencing and metabolomic profiling of
intestinal ILC subsets to identify an enrichment of polyamine biosynthesis in ILC3s,
converging on the rate-limiting enzyme ornithine decarboxylase (ODC1). In vitro and
in vivo studies demonstrated that exogenous supplementation with the polyamine
putrescine or its biosynthetic substrate, ornithine, enhanced ILC3 production of IL-22.
Conditional deletion of ODC1 in ILC3s impaired mouse antibacterial defense against
Citrobacter rodentium infection, which was associated with a decrease in anti-microbial
peptide production by the intestinal epithelium. Furthermore, in a model of anti-CD40
colitis, deficiency of ODC1 in ILC3s markedly reduced the production of IL-22 and
severity of inflammatory colitis. We conclude that ILC3-intrinsic polyamine biosynthe-
sis facilitates efficient defense against enteric pathogens as well as exacerbates autoim-
mune colitis, thus representing an attractive target to modulate ILC3 function in
intestinal disease.

innate lymphoid cells j polyamines j IL-22 j ornithine decarboxylase j enteritis

Innate lymphoid cells (ILCs) are lymphocytes which lack T or B cell receptors and con-
stitutively reside at barrier tissues (1–3). Functional diversification of ILC subsets paral-
lels the current paradigm for T helper cell differentiation with group 1 ILCs (ILC1s),
group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s) mirroring Th1, Th2, and Th17,
respectively. The murine small intestine lamina propria (siLP) contains major popula-
tions of ILC3s and ILC2s with minor populations of ILC1s and natural killer cells.
ILC3s originate from progenitors derived from fetal liver and bone marrow which pop-
ulate the intestine during embryonic development and early after birth (4–6). ILC3s
are characterized by the expression of the lineage-determining transcription factor,
retinoic acid (RA)-related orphan receptor γ isoform t (RORγT), and the capacity
to produce IL-22, IL-17A/F, and granulocyte-machrophage colony stimulating fac-
tor (GM-CSF). In the intestine, ILC3s provide two major effector functions: the
rapid production of immunoregulatory cytokines and the formation of tertiary lym-
phoid tissue (7). These roles are delegated among three functionally distinct subsets
based on the expression of NKp46 and CCR6. NKp46+ ILC3s are abundantly dis-
tributed throughout the siLP but are markedly reduced in the colon and mesenteric
lymph nodes (8). This subset is dependent on microbiota-derived signals for differ-
entiation and cytokine production (9). They also exhibit functional plasticity; they
express T-BET, produce interferon-γ (IFN-γ), and are capable of transdifferentia-
tion to RORγT� ILC1s (10–12). NKp46�CCR6� double-negative (DN) ILC3s
are proposed to contain intestinal precursors which acquire T-BET expression to
differentiate into NKp46+ ILC3s (13). Last, CCR6+ ILC3s are proposed to induce
formation of tertiary lymphoid tissue such as cryptopatches (CPs) and isolated lym-
phoid follicles (14–17). As opposed to NKp46+ ILC3s, these cells are localized to
the base of intestinal crypts in CPs and constitutively produce IL-22 independent of
microbiota-derived signals (9).
The differentiation and function of ILC3s are significantly influenced by metabo-

lism. We have previously shown that intrinsic metabolic control mediated by
mTORC1-HIF1α and the production of mitochondrial reactive oxygen species are
necessary for ILC3 proliferation and production of IL-22 and IL-17 (18). These studies

Significance

Group 3 innate lymphoid cells
(ILC3s) mediate immune
responses in bacterial infections
and autoimmunity. Intestinal ILC3s
encountermetabolic signals
derived from the diet and
microbiota, yet the impact of these
metabolites on ILC3s is unclear.
Here we demonstrate that
polyamines and their associated
metabolic pathways are enriched
in ILC3s. Treatment with
putrescine, a key polyamine
species, enhanced ILC3 production
of IL-22. Conditional deletion of
ornithine decarboxylase 1 (ODC1),
the rate-limiting enzyme in
polyamine biosynthesis, in ILC3s
reduced IL-22 expression and
increasedmice susceptibility to
infection by Citrobacter rodentium.
In an autoimmune colitismodel,
ODC1 deficiency in ILC3s protected
mice from colitis by reducing IL-22
production.We conclude that ILC3
polyamine biosynthesis is a
promising therapeutic target for
intestinal infections and
autoinflammatory disorders.

Reviewers: A.C., Heidelberg University; and G.S., Universita
degli Studi di Roma La Sapienza.

M.C. receives research support from Pfizer. R.J.X. is a
cofounder of Celsius Therapeutics. All the other authors
have nothing to disclose.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).
1V.P. and S.C. contributed equally to this work.
2Present address: Department of Microbiology and
Immunology, Stanford University School of Medicine,
Stanford, CA 94305.
3To whom correspondence may be addressed. Email:
mcolonna@wustl.edu.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2214900119/-/DCSupplemental.

Published October 24, 2022.

PNAS 2022 Vol. 119 No. 45 e2214900119 https://doi.org/10.1073/pnas.2214900119 1 of 9

INAUGURAL ARTICLE | IMMUNOLOGY AND INFLAMMATION OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 W
A

SH
IN

G
T

O
N

 U
N

IV
E

R
SI

T
Y

 S
C

H
O

O
L

 O
F 

M
E

D
IC

IN
E

 o
n 

Ja
nu

ar
y 

10
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

12
8.

25
2.

21
0.

3.

https://orcid.org/0000-0002-3740-2164
https://orcid.org/0000-0002-1331-7424
https://orcid.org/0000-0001-5222-4987
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mcolonna@wustl.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214900119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2214900119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2214900119&domain=pdf&date_stamp=2022-10-21


demonstrated a significant role for metabolic adaptations in regu-
lating ILC3 differentiation and function. However, the contri-
bution of other forms of metabolism in intestinal ILC3s
remains unknown. In order to comprehensively identify meta-
bolic pathways of biological significance in ILCs, we mined a
previously published single-cell RNA-seq (scRNA-seq) dataset
of small intestinal ILCs (19). Our analysis identified a strong
enrichment for polyamine biosynthetic genes in ILC3s as com-
pared to other ILCs.
Polyamines are polycationic alkylamines that are mainly

derived from arginine via the concerted action of arginase-1 and
ornithine decarboxylase (ODC1) (20, 21). Intracellular poly-
amines are highly abundant, with concentrations in the millimo-
lar range (20, 21). The levels of these metabolites are kept under
tight control by de novo synthesis, intracellular recycling, and
import/export. Aside from host-synthesized polyamines, micro-
biota are a significant source of polyamines (22). De novo syn-
thesis of polyamines is regulated by the activity and expression
of ODC1, which catalyzes the decarboxylation of ornithine to
putrescine. Putrescine is used as a substrate for the synthesis of
spermidine and then spermine by spermidine synthase (SRM)
and spermine synthases (SMS), respectively. While multiple
metabolic enzymes participate in intracellular recycling and
export of polyamines, acetylation by the enzyme spermidine/
spermine-N1-acetyltranferase (SSAT/SAT1) is the initiating
step in all these reactions. As polyamines are protonated at physi-
ological pH, they are incapable of passive diffusion across the cell
membrane. While it is understood that bidirectional transport of
polyamines is energy-dependent and saturable, the molecular
players in polyamine transport are not yet characterized (23).
Broadly, polyamines promote cell proliferation, regulate gene
transcription, and control translation elongation and termination
(20, 24, 25). Polyamines have previously been described to play
important roles in adaptive lymphocytes and myeloid cells. Early
work has demonstrated a strong association between polyamine
biosynthesis via ODC1 and activation-dependent proliferation of
lymphocytes (26, 27). Later work demonstrated that Odc1 is a
transcriptional target of c-MYC, which is a well-known down-
stream target of antigen receptor and IL-2 signaling (28–32).
ODC1 facilitates lymphocyte proliferation through multiple mech-
anisms, but the most well-described has been the hypusination of
eukaryotic initiation factor 5A (eIF5A) (24). Hypusine is a rare
posttranslational modification which has only been reported to
occur on a single protein, eIF5A, and which uses spermidine as
its main substrate. Hypusination of eIF5A stimulates translation
of transcripts containing polyproline motifs and is necessary
for life. It is thus postulated that polyamine biosynthesis is
up-regulated during cellular proliferation to accommodate the
extensive bioenergetic and translational demands of this process.
Conditional deletion of Odc1 in T cells demonstrated wide-
spread dysfunction in TH specification during in vitro polariza-
tion, and ODC1-deficient T cells were more pathogenic in a
model of T cell transfer colitis (33). Similar work showed a
defect in the proliferation and viability of CD4+ T cells in vitro
but this defect was not observed in vivo in a model of experi-
mental autoimmune encephalitis (34). Aside from mediating
hypusination, polyamines have also been described to act as epi-
genetic regulators due to their polycationic nature. While the
exact mechanisms remain undefined, deficiencies in Odc1 have
been associated with changes in histone modifications and chro-
matin accessibility (35, 36). Given the enrichment of polyamine
biosynthetic genes in ILC3s and the documented effects of poly-
amines on immune cell function, we hypothesized that poly-
amines may play important roles in regulating ILC3 biology.

Results

Integration of Single Cell Transcriptomics and Untargeted
Metabolomics Identifies Polyamine Biosynthetic Gene
Enrichment in ILC3s. We analyzed a previously published
single-cell RNA-seq (scRNA-seq) dataset of small intestinal
ILCs to identify differentially enriched metabolic pathways
(19). Our reanalysis of these data resolved all intestinal ILC
populations, as well as three phenotypically distinct ILC3 sub-
sets. Annotation of these clusters was performed by manual
examination of marker genes, Rorc-eGFP reporter expression,
and antibody staining for KLRG1 and NKp46, as these cells
were index-sorted (Fig. 1 A and B). ILC3 marker genes were
notable for genes related to polyamine metabolism (Odc1, Sat1,
Smox) and ROS metabolism (Gpx1 and Pon2) (Fig. 1C). The
enrichment of ROS metabolic genes supports previous findings
that activated ILC3s accumulate mitochondrial ROS (18).
ILC2-enriched genes were involved in lipid metabolism (Dgat1,
Dgat2), amino acid import (Slc7a8), and arginine metabolism
(Arg1). Both Dgat1 and Arg1 have previously been shown to be
important for the proper homeostasis and activation of ILC2s
(37, 38). These findings provided support that our transcrip-
tomic approach could reliably identify metabolic pathways of
functional significance. Out of all the metabolic genes, orni-
thine decarboxylase 1 (Odc1) stood out as the most strongly
expressed marker of ILC3 clusters, especially in CCR6+ ILC3s
(Fig. 1C). ODC1 is the rate-limiting enzyme in polyamine bio-
synthesis, facilitating the conversion of ornithine into putrescine
(Fig. 1D). Downstream polyamine metabolic genes, Smox and
Sat1, were also enriched in ILC3 subsets (Fig. 1E). This was reca-
pitulated in bulk RNA-seq profiles of ILCs provided by the Imm-
Gen Consortium (Fig. 1F) (39). Furthermore, these data show
that Odc1 is most highly expressed in CCR6+ ILC3s compared
with all ILC subsets, demonstrating that ILC3s strongly express
several components of the polyamine metabolic pathway.

In parallel with our transcriptomic approach, we additionally
sought to characterize the metabolome of the major intestinal
ILC subsets. We reasoned that these data, when used together,
would synergize to power the discovery of true biological differ-
ences in metabolism. We performed untargeted metabolomics
profiling of intestinal ILC2s and ILC3s from steady-state mice
using liquid chromatography-mass spectrometry (LC-MS). We
detected 18,036 metabolic features distributed among lipids,
amines, and cationic metabolites (Fig. 1G). By running known
chemical standards in parallel, we were able to reliably annotate
336 of these features. Using this method, comparison of metabo-
lites in ILC3s and ILC2s demonstrated an enrichment for two
polyamines, putrescine and N-acetyl-spermidine, in ILC3s as well
as an enrichment of cyclic adenosine monophosphate (cAMP) in
ILC2s (Fig. 1G). The latter finding is in accordance with pub-
lished findings that ILC2s are under homeostatic regulation by
calcitonin gene-related peptide (CGRP) which acts through a
Gαs-protein-coupled receptor to promote accumulation of intra-
cellular cAMP (40, 41). This result provided evidence that our
assay could detect biologically significant metabolites. We validated
the enrichment of polyamines in ILC3s using targeted high-
performance LC-MS (Fig. 1H). The enrichment of putrescine was
especially significant as it is the direct product of ODC1, providing
a strong link between our transcriptomic and metabolomic data.

Polyamines Support ILC3 Production of IL-22. In order to
understand the role of polyamines on ILC3 function, we required
an in vitro system of ILC3 function where we could tightly control
polyamine levels. For this purpose, we utilized MNK-3 cells, an
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ILC3-like cell line. MNK-3 cells express RORγT, lack T cell line-
age markers, express classical ILC3 surface markers (CD117,
CD127, NKp46, CCR6, CXCR5, and CD90.2), and model

ILC3 expression of IL-22 and IL-17A/F (42). Using MNK-3 cells,
we performed a chemical screen with multiple polyamine species
(Fig. 2A). When stimulated with IL-23, MNK-3 cells pretreated
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Fig. 1. scRNA-seq and metabolomics of intestinal ILCs identifies enrichment of polyamine biosynthesis in ILC3s. (A) Uniform manifold approximation and pro-
jection (UMAP) of intestinal ILC subsets. (B) Feature plots showing enrichment of marker genes and selected protein/reporter molecules specific to ILC subsets.
(C) Dot plot showing enrichment of metabolic enzymes in ILC subsets. (D) Schema showing polyamine biosynthetic and catabolic pathways. (E) Dot plot showing
enrichment of enzymes involved in polyamine biosynthesis and catabolism in ILC3 subsets. (F) Bulk RNA-seq profiles of polyamine metabolic genes for ILC2
and ILC3 subsets. Obtained from ImmGen. (G) Volcano plot showing differentially abundant metabolites between ILC2s and ILC3s (n = 4). (H) Targeted valida-
tion of polyamine biosynthetic intermediates in ILC2s and ILC3s (n = 2). Results are shown as mean ± SEM.
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with putrescine produced significantly more IL-22 (Fig. 2B). How-
ever, other polyamine species such as spermidine and spermine did
not significantly affect IL-22 production. While IL-23 stimulation
alone is not sufficient to induce IL-17F production from MNK-3
cells, we found that IL-23 and putrescine together induced

significantly higher IL-17F production (Fig. 2C). We then asked
whether the enhancement of IL-22 protein production occurred
via transcriptional regulation or posttranscriptional regulation. We
performed quantitative RT-PCR on MNK-3 cells treated with
IL-23 or IL-23 and putrescine. We found that although putrescine
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tive of 3 independent experiments. Data from D–F are representative of two independent experiments. Data from G and H are pooled from two independent
experiments. Results are shown as mean ± SEM. P values were calculated using the two-tailed Student’s t test or one-way ANOVA and the Tukey’s multiple
comparisons test. ns, not significant. **P < 0.01; ***P < 0.001; ****P < 0.0001. PA = polyamines; UT = untreated; PUT = putrescine; ORN = ornithine.
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was unable to induce Il22 transcription alone, it significantly
enhanced Il22 transcription when combined with IL-23 (Fig. 2D).
Surprisingly, we found that putrescine was sufficient to induce Il17f
transcription by itself and that this induction was further enhanced
with IL-23 cotreatment (Fig. 2E). We also found that putrescine
enhanced IL-22 production in primary ILC3s treated with IL-23
(Fig. 2F). In order to investigate the roles of polyamine function on
ILC3 function in vivo, we fed wild-type (WT) mice with ornithine,
the biosynthetic substrate for putrescine, for two weeks via drinking
water. After two weeks of ornithine supplementation, siLP CCR6±

ILC3s produced significantly more IL-22 at baseline, compared with
untreated controls, consistent with their high expression of Odc1
(Fig. 2 G and H). After stimulation with IL-23, IL-22 production
was still higher in the ornithine-fed group but was no longer statisti-
cally significant. In contrast, ornithine supplementation did not sig-
nificantly alter IL-22 production by CCR6� ILC3s at baseline or
after stimulation ex vivo. These data demonstrate that the polyamine
putrescine positively regulates transcription of Il22 in MNK-3 cells
and ILC3s, and that supplementation with its metabolic precursor,
ornithine, enhances IL-22 production by CCR6+ ILC3s in vivo.

ILC3-Intrinsic Polyamine Biosynthesis Supports Control of
Enteric Pathogens. We then asked whether ILC3-intrinsic
polyamine metabolism was necessary for ILC3 functions in vivo.
To address this, we generated RorcCre Odc1flox/flox mice
(Odc1ΔILC3,T) to ablate polyamine biosynthesis in ILC3s. It is
important to note that RorcCre is also active in all conventional
T cells. Odc1ΔILC3,T mice developed normally and displayed no
signs of pathology or sickness. Quantification of siLP immune
cell subsets revealed no significant differences in T cell or ILC3
subsets (SI Appendix, Figs. S1 and S2). Functional profiling of
ODC1-deficient ILC3s at steady-state demonstrated moderate
but nonsignificant reductions in IL-22 and IL-17A production
(SI Appendix, Figs. S1 and S2). ILC3s and IL-22 play a critical
role in resistance to Citrobacter rodentium by augmenting intes-
tinal epithelial barrier function (43, 44, 45). Given the
enhancement of Il22 expression by polyamines, we hypothe-
sized that Odc1ΔILC3,T mice would be less protected against
infection by enteric pathogens. Thus, we infected Odc1ΔILC3,T

and WT controls with C. rodentium and monitored them for
infection severity. As the RorcCre recombines in both ILC3s and
all conventional T cells, we only examined mice during the
innate phase of the infection (Fig. 3A). Consistent with previous
data showing partial redundancy of ILC3s in preventing weight
loss during C. rodentium infection (46), we did not observe any
significant changes in weight (Fig. 3B). However, assessment of
CFU on day 7 before the adaptive immune system responds to
infection showed that Odc1ΔILC3,T mice contained significantly
more bacterial burden compared to Cre-negative controls (Fig.
3C). IL-22 protects against C. rodentium infection through the
induction of antimicrobial peptides by the intestinal epithelium.
To test whether this mechanism may be involved in the impaired
protection observed in Odc1ΔILC3,T mice, we analyzed bulk colonic
tissue of infected mice for antimicrobial peptide gene expression by
quantitative RT-PCR (Fig. 3 D and E). Indeed, we detected reduc-
tions in both the expression of Reg3b and Reg3g. Importantly, we
did not detect any quantitative differences in ILC or TH subsets
during C. rodentium infection (SI Appendix, Figs. S1 and S3).
Altogether, our data demonstrate that ILC3-intrinsinc polyamine
biosynthesis is important for control of enteric pathogen coloni-
zation, partially through the induction of antimicrobial peptides
by the intestinal epithelium. This occurs independently of
T cells, as ODC1-deficient T cells are not affected at this early
time point of infection.

Polyamine Biosynthesis Enhances ILC3-Driven Inflammatory
Colitis. We then asked whether polyamine biosynthesis may be
active in a model of ILC3-driven autoimmunity. We chose the
model of anti-CD40–induced colitis as ILC3s play an essential
and nonredundant pathogenic role in this model that is depen-
dent on production of IL-22 and GM-CSF (46, 47). Since this
model requires the injection of anti-CD40 in RAG-deficient
mice, we crossed Odc1ΔILC3,T mice to a RAG-deficient back-
ground (Odc1ΔILC3). Because polyamines positively regulate
ILC3 production of IL-22, we hypothesized that Odc1ΔILC3

mice would be protected against anti-CD40 colitis. Indeed, fol-
lowing injection of anti-CD40, Odc1ΔILC3 mice demonstrated
attenuated weight loss and greater recovery as compared to
Cre-negative controls (Fig. 3F). Measurement of colon length
also demonstrated less severe colonic shortening in Odc1ΔILC3

mice, indicative of decreased inflammation (Fig. 3G). Histo-
logic analysis of colonic sections from injected mice demon-
strated reduced histopathology in specimens from Odc1ΔILC3

mice (Fig. 3 H and I). We observed that Odc1-deficient ILC3s
produced significantly less IL-22 on day 4 of induced colitis,
consistent with the pathogenic role for this cytokine in the disease
process (Fig. 3 J and K). In summary, these data demonstrate
that ILC3-intrinsic polyamine biosynthesis drives autoinflamma-
tory pathology during anti-CD40 colitis.

Transcriptome of Polyamine-Enriched and Polyamine-Deprived
Conditions Implicates the Transcriptional Regulator NR4A1. In
order to investigate the mechanism by which polyamines pro-
mote the production of IL-22, we performed bulk RNA-seq of
polyamine-treated MNK-3 cells with or without stimulation
with IL-23 (Fig. 4A). Compared to untreated cells, treatment
with putrescine produced 362 unique differentially expressed
genes (DEGs; 145 up-regulated, 217 down-regulated). In
IL-23 stimulated cells, pretreatment with putrescine produced
2415 DEGs (1164 up-regulated, 1251 down-regulated) (Fig.
4B). Gene ontology enrichment of DEGs from both conditions
revealed terms related to cholesterol biosynthesis, RNA process-
ing, and cell cycle transition (Fig. 4C). In order to validate
these findings in vivo, we performed RNA-sequencing on
ODC1 knockout (KO) CCR6+ ILC3s and WT controls (Fig.
4D). CCR6+ ILC3s were selected on the basis of their high
Odc1 expression relative to other ILC3 subsets and previous
data showing that ornithine selectively increased IL-22 produc-
tion by this subset. In contrast to studies with MNK-3, ODC1
KO ILC3s had fewer DEGs (31, 15 up-regulated, 16 down-
regulated) when compared to ODC1 WT ILC3s. However,
manual inspection of DEGs revealed genes of known functional
significance in ILC3s (Rorc, Il17a, Il7f, Il22). We also observed
significant down-regulation of the polyamine catabolic enzyme
Sat1, indicating some degree of metabolic compensation in the
absence of ODC1. Notably, ODC1 KO ILC3s had signifi-
cantly reduced expression of Il22. While ODC1 KO ILC3s dis-
played increased expression of Rorc, measurement of RORγT
protein by intracellular staining revealed equivalent amounts
between ODC1 KO and WT ILC3s (Fig. 4E). As Lingo4,
which is directly adjacent to Rorc, was also significantly elevated
in ODC1 KO ILC3s, we attribute the increase of these two
transcripts to the presence of the Rorc-Cre transgene. We then
overlapped down-regulated genes from ODC1 KO ILC3s with
up-regulated genes from putrescine-treated MNK-3 cells in
order to identify consistent polyamine-dependent genes (Fig.
4F). As expected, Il22 was down-regulated in ODC1 KO
ILC3s and up-regulated in stimulated MNK-3 cells pretreated
with putrescine. Surprisingly, only two genes were shared by all
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Fig. 3. ILC3-specific deficiency of ODC1 renders mice susceptible to infection with C. rodentium but is protective during anti-CD40–induced colitis.
(A) Diagram of experimental timeline for C. rodentium infection. (B) Percentage weight loss during C. rodentium infection (n = 4). (C) Colony-forming unit (CFU)
counted from fecal pellets from control and Odc1ΔILC3,T mice on day 7 of C. rodentium infection (n = 8). (D, E) Relative expression of Reg3b and Reg3g from
whole distal colon tissue of control and Odc1ΔILC3,T mice on day 10 of C. rodentium infection (n = 8). (F) Percentage weight loss during anti-CD40-induced coli-
tis (n = 7–8). (G) Colon length of control and Odc1ΔILC3 mice on day 7 of anti-CD40-induced colitis (n = 7–8). (H) Representative hematoxylin and eosin (H&E)
sections of distal colon on day 7 of anti-CD40–induced colitis. (I) Histologic colitis score of H&E slides of distal colon from control and Odc1ΔILC3 mice on day
7 of anti-CD40–induced colitis (n = 7 to 8). (J) Representative FACS plot of IL-22+ ILC3s from colon lamina propria (cLP) of control and Odc1ΔILC3 mice on day
4 of anti-CD40–induced colitis. (K) Frequency of IL-22+ colonic ILC3s from control and Odc1ΔILC3 mice following stimulation with PMA/Ionomycin for 4 h
(n = 6). Data from B is representative of two independent experiments. Data from C–K are pooled from two independent experiments. Results are shown as
mean ± SEM. P values for C were calculated using the Mann–Whitney test. All other P values were calculated using two-tailed Student’s t test. **P < 0.01;
***P < 0.001.
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three conditions: Sat1 and Nr4a1. As discussed above, changes
in Sat1 are likely a form of metabolic auto-regulation due to
increased or decreased polyamine flux. NR4A1 has previously
been shown to positively regulate ILC3 function as Nr4a1 KO
ILC3s have defective production of IL-22 (48). Importantly,
Nr4a1 was up-regulated by putrescine treatment in the absence of
stimulation. Thus, polyamines may enhance IL-22 transcription
through induction of Nr4a1 transcription prior to stimulation.

Discussion

In this study, we utilized single-cell transcriptomics to identify
a novel association between polyamine metabolism and ILC3s
which was validated using metabolomics. Using a novel mouse
model of ILC3-intrinsic deletion of ODC1, the rate-limiting
enzyme of polyamine biosynthesis, we demonstrated that poly-
amine biosynthesis was required for both optimal antibacterial
defense and ILC3-driven autoimmune colitis.
Using an ILC3-like cell line and primary ILC3s, we demon-

strate that polyamines positively regulate transcription of Il22,
and to a lesser extent Il17f. Concordantly, we find decreased
expression of Il22, Il17a, and Il17f in ODC1-deficient CCR6+

ILC3s, but production of these cytokines are only modestly
decreased ex vivo. Notwithstanding, we show that ILC3-
intrinsic deletion of ODC1 is sufficient to impair host control
of the enteric pathogen C. rodentium with no detectable
involvement from adaptive immune cells. This impaired patho-
gen control is partially due to decreased induction of antimicro-
bial peptides from the intestinal epithelium, which may be a
result of decreased ILC3-derived IL-22. Consistent with these
findings, we also show that ODC1 is required for the patho-
genesis of ILC3-driven autoimmune colitis. Deficiency of
ODC1 substantially reduces ILC3-derived IL-22 and colonic
pathology during colitis. Transcriptomic analysis of MNK-3
cells and ILC3s in polyamine-enriched and deprived conditions
highlight the transcription factor NR4A1 as a possible mediator
in polyamine-driven support of Il22 transcription. These results
establish a novel role for polyamines in regulating the function
of ILC3s and demonstrate a mechanism by which polyamine
metabolism can regulate mucosal immune responses.
Both dietary and microbial sources contribute to the levels of

intestinal polyamines and their metabolic precursors. Among
dietary sources, soy-based foods or fermented products, such as
cheese, are rich in polyamines, especially spermidine. Microbial
production of polyamines in the intestine remains incompletely
understood. While certain human intestinal microflora have
been shown to synthesize polyamines, it is appreciated that
microbial polyamines arise from collective biosynthetic path-
ways shared between communities of bacteria (49). Indeed,
many individual intestinal species do not possess a complete bio-
synthetic pathway for the generation of polyamines from argi-
nine. Thus, therapeutic manipulation of intestinal polyamine
abundance through diet, probiotics, or chemical modulators is a
promising avenue for the modulation of ILC3 activity in intesti-
nal disease (50, 51, 52, 53, 54).
One notable aspect of our study is the divergent roles that

polyamines play in ILC3s compared to adaptive lymphocytes.
Polyamines are strongly associated with lymphocyte proliferation
and induction of Odc1 is driven by c-MYC (29). However, we
detect strong Odc1 expression by ILC3s, which are relatively
nonproliferative in comparison to adaptive lymphocytes. Consis-
tent with this nonproliferative feature, ILC3s express low levels
of c-MYC. An important question remains as to what drives
Odc1 expression in ILC3s. Recent work utilizing inducible

deletion of RORγT and RORα in ILCs demonstrated a down-
regulation of Arg1, Odc1, and Sat1, suggesting that Odc1 may be
induced by retinoic acid signaling, though it is hard to interpret
given the fundamental role of these transcription factors in shap-
ing the whole ILC3 identity (55).

In addition to differences in upstream regulators, polyamines
appear to play a fundamentally different function in ILC3s com-
pared to T cells. ODC1-deficient T cells display overt defects in
proliferation and lineage fidelity and present with massive
changes in transcription and chromatin accessibility (33, 36).
These changes are attributed to defects in hypusination of
EIF5a, which interfere with the translation of chromatin factors
required for epigenomic stability. In contrast, we observe a more
nuanced role for polyamines in ILC3s. The role of putrescine in
enhancing IL-22 transcription occurs on a relatively short time-
frame, with 4-h treatment being sufficient to observe robust
changes. Compared to the widespread epigenetic dysregulation
in ODC1-deficient T cells, we observe a small, but biologically
important, set of differentially regulated genes in ODC1-
deficient ILC3s. One possible explanation for these discrepan-
cies is that ODC1-deficient ILC3s can partially compensate for
the loss of polyamine biosynthesis through alternative mecha-
nisms such as polyamine salvage from the extracellular environ-
ment. Given the multifaceted roles of polyamines in biology, it
is possible that changes due to hypusination defects occur during
conditions of extreme polyamine deprivation whereas other roles
for polyamines manifest during periods of relative deficiency.
Thus, the mechanism by which ODC1 supports Il22 transcrip-
tion may represent a previously unappreciated role for poly-
amines in immune cells. Our transcriptional analyses implicate
the transcription factor NR4A1 as a potential polyamine-
dependent regulator of IL-22, consistent with a previous report
showing that Nr4a1 KO ILC3s display defective IL-22 produc-
tion (48). Polyamines have been previously described to regulate
transcription through modulation of histone modifications such
as H3K9me1/2/3 and H3K9ac (56, 57). Further studies exam-
ining how polyamines modulate NR4A1 are warranted.

Materials and Methods

Experimental details on animals, reagents and cell lines, cell extraction from tis-
sues, antibody staining for flow cytometry and sorting, sequencing and metabo-
lomic analyses, infection and colitis models, histology, and statistical analyses for
this study are described in detail in SI Appendix, Materials and Methods.

Data, Materials, and Software Availability. RNAseq data generated in this
study are deposited in the Gene Expression Omnibus (GSE214152) (58).
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