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Genome Medicine

REVIEW

Functional profiling of the gut microbiome in
disease-associated inflammation

Daniela Bornigen'?, Xochitl C Morgan'?, Eric A Franzosa'?, Boyu Ren', Ramnik J Xavier*?, Wendy S Garrett#>

and Curtis Huttenhower"#*

Abstract

The microbial residents of the human gut are a major
factor in the development and lifelong maintenance
of health. The gut microbiota differs to a large degree
from person to person and has an important influence
on health and disease due to its interaction with

the human immune system. Its overall composition
and microbial ecology have been implicated in

many autoimmune diseases, and it represents a
particularly important area for translational research

as a new target for diagnostics and therapeutics in
complex inflammatory conditions. Determining the
biomolecular mechanisms by which altered microbial
communities contribute to human disease will be

an important outcome of current functional studies
of the human microbiome. In this review, we discuss
functional profiling of the human microbiome using
metagenomic and metatranscriptomic approaches,
focusing on the implications for inflammatory
conditions such as inflammatory bowel disease and
rheumatoid arthritis. Common themes in gut microbial
ecology have emerged among these diverse diseases,
but they have not yet been linked to targetable
mechanisms such as microbial gene and genome
composition, pathway and transcript activity, and
metabolism. Combining these microbial activities with
host gene, transcript and metabolic information will be
necessary to understand how and why these complex
interacting systems are altered in disease-associated
inflammation.
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Human microbiome structure and function

The human gut is colonized by a large variety of microbial
species that differ among healthy people [1,2]. Owing to
the direct links between the human microbiome and the
immune system, disruptions of the microbial ecology of
the microbiome (dysbioses) have been implicated in
many diseases, particularly those involving systemic or
localized inflammation (Figure 1) [3-6]. This raises two
exciting possibilities for the translation of basic research
to clinical practice. The first is the use of the human
microbiome as a diagnostic tool to predict disease risk,
patient outcomes or response to treatment. The second is
the eventual use of the microbiome as a therapeutic
target, since microbial composition and metabolic activity
are modifiable with relative ease by factors such as diet
[7-9], the environment [10] and pharmaceuticals [11]. To
realize this potential, however, a deeper understanding of
biomolecular activity in these microbial communities
will need to be developed by means of functional
profiling of the human microbiome.

The gut microbiome has both the greatest microbial
density in the human body and is the site at which
microbes are most exposed to the immune system. This
has led to its implication in a range of autoimmune
diseases affecting the gastrointestinal tract [12], such as
inflammatory bowel disease [13], colorectal cancer [4],
type 1 diabetes [5] and metabolic syndromes [14]. Owing
to its extensive interaction with the systemic immune
system, however, the gut microbiome also contributes to
the activity of the enteric nervous system (neurogastro-
enterological disorders [15]), extra-intestinal tissues
(rheumatoid arthritis [16], allergy and atopy [17]), and
the skin (atopic dermatitis [18]). In many of these
diseases, genetic and environmental factors are known to
play a role, but the biomolecular mechanisms linking
microbial communities to disease are still unknown.
Further functional profiling by metagenomics, meta-
transcriptomics and additional modalities will thus be
required to understand how and why microbial genes
and genome compositions, pathway and transcript acti-
vities, and metabolic processes are altered in inflamma-
tory conditions, health and disease.
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Figure 1. A model of functional dysbiosis in the human gut microbiome during initiation and progression of complex disease. Although
many current studies focus on microbial composition shifts that occur subsequent to disease establishment, it is critical to differentiate functional
from structural changes in the microbiome and their distinct patterns in early versus late disease. (@) An illustration of microbial community
structural changes during complex disease progression. Ordinations such as principle coordinate analysis and multidimensional scaling are
commonly used to qualitatively visualize microbial community structure among multiple samples (for example, cases and controls). Ordinations
project distance measures such as beta diversity among samples into fewer dimensions in such a way that the patterns of greatest change occur on
the primary axes (here, x and y). However, particularly in early disease, case/control status is frequently not among the factors with most influence
on inter-subject microbial variation. Conversely, later-stage inflammation can have a very large effect on microbial structure, causing other sources
of variation to become visually less apparent. (b) Functional profiles of gut microbial communities remain more stable among individuals in health
than do microbial profiles, and they can likewise show more concerted differential responses in early and late disease stages. In this illustration, ‘case’
subject samples exhibit expansion of specific metagenomically encoded functions in their microbial communities during progressive phases of
inflammation, as reported in [32]. (c) Representative host histology in different phases of the inflammatory response in Crohn’s colitis. Colonic crypts
(ring structures) are gradually destroyed by immune infiltration as colitis progresses. Images show transverse sections of human colonic mucosa
stained with hematoxylin and eosin; 100 um scale bars are included for reference (images provided by WSG). CDAC, Clostridium difficile-associated
diarrhea; PC, principal coordinate.

As in single-species systems biology, various metaomic ~ we will focus on approaches that provide more direct
tools can provide insight into multiple levels of biological  information on biomolecular function within a microbial
regulation in the microbiome, including the detection of = community, such as metagenomic shotgun sequencing of
microbial organisms, genes, variants, pathways or meta- ~ whole-community DNA to provide a survey of the overall
bolic functions characterizing the microbial community  genetic potential of a microbiome. Transcriptional
in an uncultured sample, such as fecal samples or mouth  activity can likewise be assayed by metatranscriptomic
rinses. Microbial ecology has most extensively been cDNA sequencing to identify regulatory activity occur-
studied using targeted 16S rRNA gene sequencing, but  ring rapidly in response to changes in environment.
this provides only indirect information on molecular =~ Whole-community metaproteomics and metabolomics
activities and will not be the focus of this review. Instead, are currently less common, but each again captures
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further downstream aspects of both microbial and host
molecular activity [19]. In this review, we discuss
functional profiling of the human gut microbiome using
metagenomics and metatranscriptomics in inflammatory
diseases to gain insight into the microbial species, path-
ways and metabolites, as well as host genes, transcripts
and pathways that are altered during chronic inflam-
matory conditions.

The gut microbiome

Humans are born almost sterile, but during birth and
early development they are rapidly and dynamically
colonized by microbes throughout the body [20]. These
reside primarily in the gut and include bacteria, viruses
and, to a lesser degree, archaea and eukaryotic microbes
[1,21]. The number of microbial genes involved in
establishing and maintaining the community’s ecology is
immense, totaling 5,000,000 or more [1,21]. This genetic
repertoire interacts with that of the host and with
environmental factors to create and maintain a cellular
system with a metabolic and regulatory capacity com-
parable to that of complex human tissues [22]. Indeed, in
the absence of microbes, neither host gut physiology nor
the immune system develop normally [23]. The
distribution of microbes throughout the gut is highly
structured and dedicated to a variety of biological func-
tions (Box 1).

Inflammation seems to exert effects to which the gut
microbiota is particularly sensitive, and studies with the
mucosal disruptant dextran sodium sulfate, which elicits
colonic inflammation in wild-type mice, have demon-
strated that inflammation affects the microbiota [24].
Inflammation results in a cascade of cellular and
molecular effectors that can be directly bactericidal or
generate substantial environmental stress for a microbial
community. In retrospect, it is intuitive that inflammatory
bowel disease, celiac disease, rheumatoid arthritis and
other chronic inflammatory conditions represent one of
the largest families of known microbiome-perturbing
human diseases. The additional roles of symbiotic
microbial stimulation of innate and adaptive immunity in
the gut and training of systemic immunity are much less
well understood, but they undoubtedly function in the
triggering, maintenance and remission of inflammatory
conditions.

Gut microbes in chronic inflammatory and
autoimmune disease

Inflammatory bowel diseases

It has long been accepted that the inflammatory bowel
diseases - Crohn’s disease and ulcerative colitis - occur in
conjunction with a dysregulated host immune response
to the normal gut microbiome, and include strong genetic
components [25]. Recent genome-wide association
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studies (GWAS) have been very successful in revealing
the responsible human genes [3]. However, disease-
causing functional defects have only been explained for a
few genes (for example, NOD2, IL23R), which are also
intimately tied to the microbiome by crucial roles in
controlling microbial infiltration in the gut [26].

Assessing microbial functional responses in tandem
with additional human genetic risk variants may help to
better identify their functional consequences in vivo. For
example, low plasma levels of vitamin D (which inhibit
pro-inflammatory p38 kinase signaling [27], affect innate
immune function [28] and may promote development of
T regulatory cells [29]) are associated with an increased
risk of Crohn’s disease [25]. The gut microbiome can alter
both the distribution and expression of vitamin D recep-
tors in the gut [30], suggesting that natural microbial
variation is a contributing influence on vitamin D
metabolism. Dietary fiber, which is metabolized by the
gut microbiota to anti-inflammatory short-chain fatty
acids (SCFAs), has been found to be protective against
inflammatory bowel disease in some studies [25]. Both
low vitamin D levels and dietary fiber intake represent a
host-microbe metabolic interaction that potentially
affects inflammatory bowel disease onset or activity.

The widely observed reduction in diversity of gut
microbial ecology in inflammatory bowel disease [31,32]
may be a consequence of more specific functional
changes. For example, increased levels of Enterobac-
teriaceae may be the result of differences in this taxon’s
ability to tolerate inflammation-associated redox stress
[33], and SCFA-producing Clostridia may be outcom-
peted by more generalist or opportunistic Enterobac-
teriaceae, resulting in decreased microbial SCFA pro-
duction and contributing to a self-reinforcing pro-
inflammatory state incorporating both host immune and
microbial metabolic components [32]. Such host-
microbe and microbe-microbe regulatory feedback loops
provide novel potential targets for pharmaceutical and
probiotic development, since both the introduction of
specific microbes [34] and the disruption of individual
microbial processes such as redox metabolism [35] have
the potential to mitigate inflammatory processes in the
gut.

Rheumatoid arthritis

Rheumatoid arthritis is a systemic inflammatory disorder
that manifests as an inflammatory response to synovial
tissues. Recent studies have associated the oral microbial
community with the disease, with rheumatoid arthritis
patients having a higher prevalence of periodontitis and
tooth loss [36]. In the gut, several studies have shown
that diet can have a therapeutic effect on rheumatoid
arthritis in conjunction with decreased inflammation
[37]. Some initial studies have been performed to gain
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Box 1. Influences on gut microbiota structure and function

complex communities is an active area of research [104].

Overall, the gut microbiota comprises residents of the stomach, small intestine and large intestine [98]. However, owing to pH stress and
bile salt toxicity, microbial biomass is very low before the ileum. The vast majority (more than 99%) of the gut microbiome is found in

the colon, where (among other activities) it breaks down indigestible fibers and ferments them into SCFAs. These are an essential fuel

for colonocytes, maintain colon health, and provide approximately 10% of dietary energy from a Western diet. The colon contains by far
the most microbial cells in a typical human body, dominated by the Bacteroidetes and Firmicutes phyla, with lesser but still important
consortia of Proteobacteria, Actinobacteria, other bacterial clades, and Archaea. Both stool samples and biopsies have been extensively
investigated as representatives of the colonic mucosal and luminal communities; comparable taxa are detected regardless of sample origin
but in different relative abundances [32], reflecting microbial dispersion and niche specialization.

The composition of the gut microbiome is influenced by both genetics and environmental factors such as diet [6] and age [32]. For
example, monozygotic twins were found to be concordant for carriage of Methanobrevibacter smithii at a much higher rate than dizygotic
twins (74% versus 14%) [99], although it is difficult to distinguish this effect from that of co-habitation [100]. The dynamics of microbial
responses to perturbations are particularly critical to consider during early life and beyond [101-103], and longitudinal sampling of

The gut microbiota seems to be resilient to short-term dietary change, as even profound shifts in diet (such as from a high-fat/high-protein
to a low-fat/low-protein diet) tend to quickly change the relative abundance of microbial taxa but not their presence or absence [105,106].
However, humans from different environments (with correspondingly different long-term diets) do maintain distinct microbiomes. For
instance, a recent study compared healthy children from Italy and Burkina Faso - the latter of whom consumed a much higher-fiber diet
and very little meat. The microbiota of the children from Burkina Faso was much more phylogenetically diverse and had approximately
fourfold higher fecal butyrate concentrations, indicating microbial communities more efficient at extracting nutrients from fiber than those
of the Italian children [9]. Interestingly, abundant Enterobacteriaceae, decreased intestinal biodiversity and decreased intestinal levels of
butyrate are all associated with inflammatory bowel disease, which is much less common in non-Western countries [32,107].

Non-dietary perturbations, such as antibiotics and other pharmaceuticals, also profoundly affect both host and microbiome. A study
of mice given long-term, sub-therapeutic doses of antibiotics found large shifts in the microbial community that led to an increase in
SCFAs. These in turn contributed to a corresponding increase in host adiposity, although the mice did not eat more [11]. Higher doses
of antibiotics disrupt even more of a host's endogenous microbial community, potentially leaving human patients susceptible to
opportunistic infections such as Clostridium difficile, which can precipitate a vicious cycle of microbial community disruption [108].

more insight into the functional consequences of changes
in the intestinal microbiome and their impact on
inflammation and immune responses [38]. For example,
Lactobacillus bifidus was shown to trigger arthritis in a
mouse model (IL-1-receptor-antagonist-deficient mice),
which was specifically driven by an imbalance in T-cell
homeostasis and mediated through Toll-like receptor
(TLR2 and TLR4) signaling [39]. In this mouse model,
which is known to spontaneously develop an auto-
immune T-cell-mediated arthritis due to excessive inter-
leukin (IL)-1 signaling [40], TLR2 and TLR4 were involved
in the expression of autoimmune arthritis. Specifically,
TLR2 slowed the progression of arthritis by controlling
the function of T regulatory cells and regulating
interferon (IFN)-y-producing T helper 1 (Th1) cells, and
TLR4 increased the severity of the disease by modulating
the T helper 17 (Th17)-cell population and IL-17 produc-
tion. Another study found that autoimmune arthritis was
strongly attenuated in a K/BxN mouse model under
germ-free conditions, accompanied by reductions in
serum autoantibody titers, splenic autoantibody-secret-
ing cells, germinal centers, and the splenic Th17 cell
population [16]. The authors observed that their mouse
model had a dearth of IL-17-producing T cells, which
could be reversed by introducing segmented filamentous
bacteria into the gut of germ-free-housed mice,

provoking rapid onset of the disease. Taken together,
these studies suggest that both the oral and gut micro-
biome may trigger rheumatoid arthritis by inciting local
inflammatory responses in the host, but do not elucidate
what mechanism might be at play in systematizing this
response or targeting it to the synovium.

Allergy and atopy

The role of the microbiome in allergy and asthma is the
foundation of the widely recognized ‘hygiene hypothesis,
which states that a combination of improved hygiene,
frequent use of antibiotics, or vaccinations may lead to
reduced bacterial and viral infections, and to an altered
immune system that responds inappropriately to innocu-
ous substances [41]. Recent functional studies of sym-
biotic microbes in these conditions have been primarily
epidemiological, and have targeted environmental risk
and preventive factors such as lifestyle, infections and
diet [42]. Perhaps the strongest results have arisen from
investigations of early life exposures to environmental
microbes, establishing a link between home allergen
levels, lymphocyte proliferation and wheeze in children
at high risk for asthma [43]. In several such studies, early
life 'urban’ allergen exposures have been associated with
later asthma and allergy risk, whereas environmental
microbial exposures have generally been protective.



Boérnigen et al. Genome Medicine 2013, 5:65
http://genomemedicine.com/content/5/7/65

Although the skin microbiome has been the main
habitat investigated for atopic skin diseases [44], the gut
microbiome’s extensive interaction with the immune
system has also led to it being indirectly linked with
atopic manifestations and sensitization [17], and directly
with atopic dermatitis in infants [18]. These studies
revealed several microbes, such as Bifidobacterium,
Staphylococcus, Escherichia coli and Clostridium difficile,
that were associated with a higher risk of atopic derma-
titis in children, albeit not yet with a functional
explanation. Interestingly, maternal intestinal and vaginal
Bifidobacteria, one of the most important groups of early
life microbes, have an incompletely characterized influ-
ence on the establishment of Bifidobacteria during infant
gut colonization [45,46]. A recent cohort study investi-
gating the influence of maternal gut microbiota on
wheezing in early childhood found an association
between higher total maternal aerobes and Enterococci
with increased risk of infant wheeze. A core concept in
the hygiene hypothesis is that microbial exposures in
early life may ‘tune’ immune responses and ensure host-
immune homeostasis over the human lifetime. CD4* T-
helper cell and innate lymphoid cell populations and their
effectors may be one component of this [41], and early
life responses to specific microbial clades may participate
in or trigger activation of these immune responses.

Disorders of the brain-gut axis
Bidirectional communication between the brain and the
gut has long been recognized [47], and has become the
focus of increasing research on the ‘microbiome-gut-
brain axis’ [15]. Just as the microbiome affects the
physical development of the gut, it can also influence
mammalian brain development [48]. During adult life in
rodents and insects, the composition of the gut micro-
biome has been found to influence a variety of complex
behavioral traits, including anxiety [49] and mating
preferences [50]. Potential mechanisms have been identi-
fied for associations between stress-related disorders
(such as anxiety and depression) and the gut microbiome
in laboratory mice [51]. In this study, for example, GABA
transcriptional activity was found to be stimulated via the
vagus nerve by Lactobacillus rhamnosus. Preliminary
results in other systems suggest that early life stress may
result in persistent changes to the gut microbiome, which
in turn can contribute to symptoms resembling those
seen in human psychiatric disorders [52]. Combining this
with microbial metabolic responses to host hormones, as
discussed earlier, and ongoing studies of the microbiome
in weight loss [53], it seems likely that microbial products
will be found to have a role in hunger signaling and host
metabolic regulation as well.

One of the clearest links between the gut microbiota
and neural disorders is in multiple sclerosis, by way of an
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autoimmune reaction. Multiple sclerosis is a chronic
inflammatory disease of the nervous system notable for
its T-cell responses to components of nerve fiber myelin
sheaths [54]. Several loci associated with multiple
sclerosis by GWAS are at or near genes with roles in T-
cell-mediated immunity, and gut-resident viruses have
been suggested as initial triggers of this autoimmune
response [55]. Mycobacteria and their cell extracts have
been implicated in a surprisingly wide range of immuno-
regulatory processes, and in particular are capable of
suppressing central nervous system autoimmunity in the
encephalomyelitis mouse model by altering T-cell
migration, suppressing the IL-17 response, and inducing
apoptosis of activated T cells [56]. The Bacillus Calmette-
Guérin vaccination, which is prepared from an attenuated
Mycobacterium bovis strain, was associated with
decreased multiple sclerosis flare severity [57], and
bacterial lipopolysaccharide was also shown to protect
mice from central nervous system inflammation, by
promoting the growth of neuroprotective T regulatory
cells [58]. These findings are suggestive of host responses
that may be triggered by metabolic or cellular components
of the endogenous microbiota, but to date no specific
microbial molecules have been identified as causative.

Functional profiling of the microbiome

The roles of the gut microbiota in inflammatory condi-
tions have begun to be unraveled by functional profiling,
or the assessment of host and microbial biomolecular
activity in tandem with microbial community structure.
Assessment using nucleotide sequencing is typically a
two-step process. First, genes, proteins, or protein
families in the community (and sometimes in the host)
are quantified; second, individual gene families are
merged into higher-level pathways, such as metabolic
pathways and functional modules. There are several ex-
perimental assays and computational methods designed
to accomplish these steps, and the choice of method
depends on the nature of the microbial community under
investigation, as well as the sequencing data available to
describe it. Considerations in the choice and application
of analysis methods are briefly summarized here and
reviewed in depth elsewhere [59].

Functional information can be gleaned from almost any
whole-community experimental data type; broadly, 16S
rRNA gene sequencing [60], metagenomic or metatrans-
criptomic shotgun sequencing [61], metaproteomics [62]
and/or metabolomics [63]. Host genetics and/or gene
expression can also be considered, and host products are
typically included in metabolite, protein, and sometimes
RNA datasets. Most initial data acquisition and infor-
matics are the same for whole-community studies as for
single-organism studies, except that first, samples must
be handled with care in order to preserve, lyse and
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extract a wide range of microbial organisms without bias
[64,65], and second, computational interpretation in the
presence of multiple underlying genomes can be
challenging. Metagenomics and metatranscriptomics
(together meta'omics) currently represent the most cost-
effective balance between functional and structural data.

Metaomic data are typically interpreted by first
assigning sequences to gene families [59]. This can be
done by assembling short reads into contigs and identi-
fying protein-coding sequences (CDSs, using approaches
comparable to annotating single genomes), or reads can
be assigned directly to gene or protein families. The latter
approach may either map reads to annotated CDSs in
microbial reference genomes, or they may be searched
against databases of characterized protein families. In
either case, the result is a profile of microbial gene
families present in a community and their relative meta-
genomic or metatranscriptomic abundances. Gene family
identification systems amenable to this process include
the KEGG Orthology, COG [66], NOG [67], Pfam [68]
and UniRef [69]. Each of these satisfy the necessary
criterion of a database of systematically identified protein
sequence groups, with each individual sequence repre-
senting a family member within an individual organism.
For communities described by 16S sequencing data
rather than shotgun data, direct inferences cannot be
made about the CDSs present in the community, and
instead one must rely on inferring the presence of
particular functions by associating 16S sequences with
gene content from annotated reference genomes [70].

Individual gene families profiled in any of these ways
can then be hierarchically organized for ease of inter-
pretation, just as individual microbes are organized
taxonomically or phylogenetically. This is a critical step,
as catalogs typically describe anywhere from tens of
thousands to millions of gene families in the gut
microbiome, but no pathway catalogs exist so far that are
specifically appropriate to microbial communities. Data-
bases developed for single organisms do help this effort,
such as KEGG [71], MetaCyc [72] and SEED [73].
Integrated bioinformatics pipelines have been developed
to streamline the multi-step processes described above,
including IMG/M [74], MG-RAST [75], MEGAN [76]
and HUMAnN [77]. Each of these procedures for
functional sequence analysis provides researchers with
an option for translating raw metaomic sequence data
into a more easily interpreted profile of the functional
potential of a microbial community.

Functional profiling of the microbiome can be a time-
consuming process for samples characterized by a large
amount of sequence data, as mapping these sequences to
a gene family or reference genome databases is compu-
tationally intensive. However, once this mapping step is
completed, subsequent analyses (such as merging gene
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families into pathways) proceed quickly, and can rapidly
produce clinically relevant results. For example, screen-
ing an individual’s gut microbiome profile or the micro-
biome of an infection for known antibiotic-resistance
genes [78] can illuminate the resistance potential of a
microbial community, informing treatment options. In
addition, profiling the enzymatic composition of a
patient’s gut microbiome may indicate how the cells in
that community will interact with pharmaceutical
interventions; for example, whether they will metabolize
them to inactive or potentially hazardous forms [79,80].
Last but not least, the early stages of diseases with
microbial involvement are often not associated with
dramatic changes in microbial community composition.
However, the community’s functional profile may reveal
disease-linked perturbations at a much earlier stage of
disease progression, leading to the possibility of using
functional profiling to generate biomarkers for disease
diagnosis (Figure 1).

Functional profiling case studies in health and
disease

A comprehensive example of functional interpretation of
the human microbiome can be found in the Human
Microbiome Project (HMP), which provides both experi-
mental protocols [81] and computational pipelines [1] for
assessing the gut and other body sites. The results of the
HMP provide a useful reference for gut microbiome
function in health, providing a variety of public data from
a cohort of 242 individuals, including both 16S rRNA
gene and metagenomic shotgun sequencing [82] for the
analysis of microbial communities and functional pro-
files. All subjects were clinically screened to ensure a high
level of health [83], and these data represent a powerful
set of tools for meta-analysis alongside new disease-
focused studies [8]. Within the study itself, it was shown
that metagenomic carriage of metabolic pathways was
stable among individuals even when microbial compo-
sition was not, and, of the recorded metadata, racial/
ethnic background showed one of the strongest asso-
ciations between clinical metadata and either pathways
or microbes. The magnitude of this effect was larger than
that of age in this cohort, in which diet was not deeply
characterized; these two factors have been associated
independently with microbiome composition in other
studies [6,32]. On the basis of these data [1], 118 stool
samples from healthy individuals were profiled, high-
lighting a core gut microbiome that consists of stable
pathways that are present despite variation in microbial
abundances (Figure 2). These findings thus specify the
range of normal structural and functional configurations
in the microbial communities of a healthy Western
population, and they provide a framework for future
studies of human microbiome function.
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Figure 2. The core gut microbiome consists of stable pathways present despite variation in microbial abundances. Profiles of 118 stool
samples from healthy individuals, showing the relative abundances of microbial organisms (red), inferred microbial pathways [70] (green), and
microbial pathways after randomization (blue, all data from [1]). All relative abundances are shown as median and interquartile range across all
samples (y-axis) ranked by median (x-axis) and square-root (sqrt) scaled for visualization. As illustrated by several studies (for example, [1,89]), a
stable distribution of habitat-adapted microbial pathways is maintained on a functional level (green) rather than on a phylogenetic level (red).
Random assignment of microbes to samples followed by re-inference of functional potential (blue) results in a metagenome that is more variable,
more skewed, and of distinct composition from that in the observed ‘core’of gut microbiome functions.

Maintaining community function in health

A companion project within the HMP characterized the
function and composition of the digestive tract sites
assayed by the project, comprising ten distinct body
habitats (in the mouth, oropharynx and colon [84]). These
microbial habitats formed four related areas of microbial
community configurations: tooth hard surfaces; two
distinct types of oral soft tissues and environments
(cheek/gingiva/palate versus throat/tonsils/tongue/saliva);
and the gut, as represented by stool samples. Metabolic
profiling revealed a set of ‘core’ digestive tract pathways
enriched in abundance throughout these communities,
including pathways involved in the acquisition and export
of metals, and cytochrome ¢ heme lyase, an enzyme
involved in porphyrin and chlorophyll metabolism. These
pathways were unique in that most genes encoding
exporters needed for heme tolerance (such as MtrCDE
and HrtAB) were not significantly associated with
specific organisms in the study, and the gene encoding

hemerythrin (responsible for oxygen transport in specific
organisms) was detected at multiple body sites but was
highly enriched in stool. Conversely, each of the four
habitats was also enriched in more niche-specific meta-
bolism, such as the B-glucosidase pathway in stool
(involved in cellulose breakdown to B-p-glucose), glyco-
lysis and pyruvate generation by glucose metabolism, and
several pathways for ammonia utilization (such as the
urea cycle and ornithine biosynthesis), as well as methane
production. The oral cavity, conversely, showed enrich-
ment for energy harvest pathways reliant on simple
sugars (mannose, fructose, trehalose, and so on) and in
many cases oxidative metabolism (especially when con-
trasting, for instance, supra- versus sub-gingival plaques).
While in many cases these pathways were broadly
phylogenetically distributed among diverse clades, others
were tightly tied to just a few microbes (for example,
hydrogen sulfide production by the Veillonella, Seleno-
monas and Prevotella genera).
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Perturbations of gut microbiome function in disease

Both protective immune responses and dysregulation
during autoimmunity are activated by signals initiated by
innate immunity and driven by microbial stimuli [85].
Many studies have thus investigated microbial function
in the gut microbiome in these diverse autoimmune
diseases, with several recent examples including inflam-
matory bowel disease [31,32,86,87], rheumatoid arthritis
[36], and allergy and atopy [18,42,88] (as described
earlier), as well as metabolic syndrome [89,90] and neuro-
logical disorders [15,47-49]. As a T-cell-mediated meta-
bolic disease, type 1 diabetes is another prime candidate
for involvement of the gut microbiota [5,10,91]. Much
current work on the function of the gut microbiome in
type 1 diabetes relies on the non-obese diabetic (NOD)
mouse model [92,93], a well-known system in which
immune-mediated pancreatic [B-cell destruction is
triggered by gut microbial colonization [93]. Table 1
summarizes these and additional relationships among
microbial organisms and pathways, as well as human
genes and pathways, that are known to be involved in
these inflammatory conditions.

A recent study investigated the human gut microbiome
in malnourished children, specifically in kwashiorkor, a
childhood protein-deficiency disease [6]. The authors
first identified nine well-nourished twin pairs and 13 twin
pairs who became discordant for kwashiorkor over the
study period of 18 months. Fecal metagenomics showed
age to be the greatest determining factor in gut microbial
variation in healthy children, along with family member-
ship and diet. Healthy children showed a steady progres-
sion toward a consistent microbiome common to older
children, which did not take place in subjects suffering
from kwashiorkor. Surprisingly, though, no significant
changes in the functional composition of the gut
microbiome occurred after treatment. Instead, several
metabolic pathways were already significantly different in
discordant twin pairs at the time of diagnosis, such as a-
mannosidase, an enzyme involved in glycan biosynthetic
reactions and catabolism, and protein-N(PI)-phospho-
histidine-sugar phosphotransferase, an enzyme involved
in sugar catalysis. Microbial pathways including -
glucosidase and [-galactosidase activity remained signifi-
cantly different in discordant twin pairs a month after
cessation of treatment, suggesting substantial stability of
changes induced in the microbiome by extreme environ-
mental effects.

The authors subsequently transplanted fecal microbial
communities from discordant twin pairs into gnotobiotic
mice to identify features of the microbial community
structure, metabolism, and host-microbial co-metabo-
lism associated with donor health status and diet. In this
mouse model, they found increased levels of the majority
of SCFAs, carbohydrates, amino acids, nucleotides and
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lipid metabolism in cecal and fecal samples in mice
receiving dietary treatment, whereas levels of several di-
and monosaccharides (maltose, gentibiose and tagatose)
were decreased. When the mice (both healthy and with
kwashiorkor) started treatment, the levels of nine amino
acids (valine, leucine, isoleucine, methionine, phenyl-
alanine, threonine, alanine, tyrosine and serine) rapidly
increased. After returning to a normal diet, most of these
amino acids remained higher in healthy mice than before
therapy, but in the kwashiorkor group, these values fell to
pre-treatment levels. This suggests that the stable
alteration of the microbiome specifically influences its
future ability to maintain healthy host-microbe metabolic
interactions. Additionally, the authors found that the
urinary excretion of the tricarboxylic acid (TCA) cycle
intermediates 2-oxoglutarate, citrate, succinate and
fumarate were closely coupled in healthy mice but
decoupled in kwashiorkor. This disruption of the TCA
cycle resulted in an increased succinate-to-fumarate
ratio, possibly from inhibition or depletion of succinate.
The authors suggested that this might be the result of
kwashiorkor-specific generation of chemical products
selectively inhibiting TCA cycle enzymes, making energy
metabolism an even more extreme challenge for children
with kwashiorkor exposed to a micro- and macro-
nutrient-deficient, low-calorie diet.

This result provides an informative case study in that
it traces a microbiome-linked human disease from
population-level epidemiology through a validated
molecular mechanism to potential diet-driven treat-
ment. Although the resulting human health recom-
mendations remain to be validated, it provides an
example of a case in which the three major elements of
functional gut microbiome profiling were used to derive
an actionable result: broad sequencing-based surveys of
the gut microbiome in a human population, deep
sequencing and functional assays in a gnotobiotic
mouse model to detail metabolic mechanisms, and
subsequent follow-up profiling of a potential treatment
in humans. Even in this relatively straightforward
example, interplay between environmental factors, diet,
variable microbial composition and age must all be
taken into account to understand host-microbiome
interactions in human disease.

Functional profiling in the future: a perspective

The past five years have seen an explosion of human
microbiome studies, most of which have associated
changes in microbial ecology with human health or the
environment [1,7,8,81,89,94]. In almost no cases, though,
do we yet know the causality, mechanism or relevance of
these microbial shifts. In the few instances where specific
biomolecular interactions have been addressed [95,96],
they have begun to effectively indicate routes by which
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Table 1. Published relationships among microbial clades, pathways, and human genes and pathways involved in

autoimmune diseases

Disease Microbes Microbial pathways Host pathways Representative host genes References
Inflammatory Enterobacteriaceae, Glutathione metabolism and Autophagy, Th17, ATGI16L1, CARDY, DUOX2, [3,25,31,32,
bowel disease  Roseburia, transport, riboflavin metabolism, T-cell responses and IL10,IL23R, IRGM, FUT2, 86,87,
Ruminococcaceae short-chain fatty acid metabolism  cytokines, JAK-STAT, MHC, NCF4, NOD2 107,109]
NF-kB, microbial
sensing
Type 1 diabetes  Akkermansia, Amino acid metabolism, [nnate immune CTLA4, IL2RA, IFIHT, INS, [5,91,
Bacteroidales, secondary metabolite signaling, mucin, MYD88, MHC, PTPN22, TLR 110-116]
Lactobacillaceae biosynthesis, butyrate production, ~ MyD88, Toll-like
carbohydrate metabolism, receptors
glycan biosynthesis and
metabolism, lactate production,
lipid metabolism, nucleotide
metabolism
Rheumatoid Bacteroides fragilis, - CD40, IL-2, NF-kB CD40, CCL21, HLA-DRBI, [38,117,
arthritis Bacteroides vulgatus, activation, SAA or IL2, IL17, IFNG, KIF5A, MHC, 118]
Clostridium coccoides, CCL5 signaling, TLR2, TLR4, TNF, TNFAIP3,
Eubacterium rectale, T-cell activation and PRKCQ
Klebsiella, Lactobacillus, response
Porphyromonas,
Prevotella, SFB
Multiple Epstein-Barr virus, Vitamin D metabolism Vitamin D, CD4* DRB1, L2, IL7, HLA, MHC [56,57,
sclerosis Mycobacteria Tcells 119-121]
Allergy, atopy Aerobes, Bifidobacteria, - IgE antibody ADAM33, ADRB2, CD14TNF, [17,18,45,
Enterococci, regulation, vitamin D IL10, IL4,IL13,IL4RA, IFNG, 46,122-128]
Staphylococcus aureus, FLG, FCER1B, HLA-DRBT,

Escherichia colj,
Clostridium difficile

HLA-DQBT, MHC

SFV, segmented filamentous bacteria.

microbiome shifts can be diagnostically interpreted or
therapeutically targeted.

The recent history of cancer genomics suggests an
important parallel for the next steps in translating
human microbiome studies to the clinic. Early des-
criptive work in cancer functional profiling proved
difficult to interpret or act on, and only a detailed
understanding of molecular activities within the
complex, mixed cellular population of a tumor allowed
the creation of effective targeted therapies. The same
necessity for deep biomolecular characterization is
likely to hold true in the complex, mixed cellular popu-
lation of a microbial community.

To this end, microbiome studies now have experimental
design options that allow the integration of both
descriptive and functional assays, as well as more conve-
nient and holistic computational interpretation. Researchers
must take advantage of these to test specific, well-
controlled hypotheses in human subjects, model systems
(mouse, zebrafish and others [97]), and in vitro (for
example, cell culture and functional screens). Epithelial
cell lines and synthetic systems (such as co-culture,
microfluidics and organoids) represent an intriguing
untapped resource. Conversely, large population surveys
relating microbial structure to function (transcripts and

proteins) have also not yet been performed and will
establish an important baseline, building on references
such as the HMP and MetaHIT.

Analytical limitations remain to be overcome in the
translation of functional microbiome surveys to human
health, both in our understanding of basic biological
mechanisms and in our ability to leverage these data for
clinical use. The former will require substantially more
comprehensive integrative models of multi-microbe and
host-microbe signaling, metabolic interaction, immuno-
logy and ecology than are available today. The latter,
again not unlike personalized cancer therapies, in many
cases still needs high-reliability, large-effect-size
predictors of disease risk and outcome in humans to be
clinically actionable. To address these challenges,
carefully designed pre-clinical experimental systems are
needed, particularly longitudinal prospective and
outcome-based studies in human populations to detail
the dynamics of microbial function during disease onset,
treatment and resolution. In the future, in combination
with novel computational models and the continued
incorporation of sequencing technologies into the clinic,
such investigations will lead us towards a deeper
understanding of microbial communities and their
functional roles in health, inflammation and disease.
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