40 research outputs found

    Dimolybdenum Bis-2,4,6-triisopropyl-benzoate Bis-4-isonicotinate: A Redox Active Analogue of 4,4′-Bipyridine with Ambivalent Properties

    No full text
    The reaction between Mo2(TiPB)4 and 4-iso-nicotinic acid (2 equiv) in ethanol leads to the formation of trans-Mo2(TiPB)2(nic)2, I, where TiPB = 2,4,6-triisopropylbenzoate and nic = 4-isonicotinate. The molecular structures of I and I·2DMSO were determined in the solid state by a single-crystal X-ray study, and its electronic structure was determined by DFT calculations on a model compound, where formate ligands were substituted for the bulky TiPB. The physicochemical properties of I are reported, and its potential as a redox active building block, a quasi-metalloorganic analogue of 4,4′-bipyridine, is described in the synthesis of molecular and solid-state assemblies. The molecular structure of I in the solid state consists of a 3-dimensional network in which each unit of Mo2(TiPB)2(nic)2 acts as a donor and acceptor via N to Mo coordination. In the structure of I·2DMSO, the DMSO ligands coordinate axially with the Mo−Mo bond via oxygen. The reaction between I and Rh2(O2CMe)4 is shown to give a 1-D polymeric chain in the solid state: [{Rh2(O2CMe)4}{Mo2(TiPB)2(nic)2}]∞, II. A similar structure was found for the product involving Rh2(O2CCMe3)4. Evidence is also reported for the formation of [(1,5-COD)MePt]2[μ-Mo2(TiPB)2(nic)2](PF6)2, III, and [(1,5-COD)Pt(μ-I)(PF6)2]n

    Potent and Selective Double-Headed Thiophene-2-carboximidamide Inhibitors of Neuronal Nitric Oxide Synthase for the Treatment of Melanoma

    No full text
    Selective inhibitors of neuronal nitric oxide synthase (nNOS) are regarded as valuable and powerful agents with therapeutic potential for the treatment of chronic neurodegenerative pathologies and human melanoma. Here, we describe a novel hybrid strategy that combines the pharmacokinetically promising thiophene-2-carboximidamide fragment and structural features of our previously reported potent and selective aminopyridine inhibitors. Two inhibitors, 13 and 14, show low nanomolar inhibitory potency (Ki = 5 nM for nNOS) and good isoform selectivities (nNOS over eNOS [440- and 540-fold, respectively] and over iNOS [260- and 340-fold, respectively]). The crystal structures of these nNOS–inhibitor complexes reveal a new hot spot that explains the selectivity of 14 and why converting the secondary to tertiary amine leads to enhanced selectivity. More importantly, these compounds are the first highly potent and selective nNOS inhibitory agents that exhibit excellent in vitro efficacy in melanoma cell lines
    corecore