43 research outputs found

    The Role of Impact Driven Chemistry on the Lithosphere of Mars

    Get PDF
    The University of Kent's two stage light gas gun was used to simulate Martian impacts in order to investigate two processes: serpentinisation and devolatilisation. Understanding these processes is vital to understanding surface mineralogy and the source of any methane, and other volatiles detected in the Martian atmosphere by past, present and future missions. Here, Martian analogue minerals were shocked and subsequently analysed using Raman Spectroscopy and Scanning Electron Microscopy (SEM) to characterise the behaviour of these minerals during planetary impacts

    Biosignatures in the solar system

    Get PDF
    Humanity's interest in whether or not we are alone in the universe spans generations, from Giordano Bruno's 16th century musings on other worlds and Giovanni Schiaparelli reporting seeing ‘canali’ in 1877 on the surface of Mars (which were thought to have been created by intelligent life) to alien invasions portrayed in today's movies. However, it is still unclear if other planetary bodies are capable of supporting life. In the search for life there are two broad areas we look into, the requirements of life and actual signs of life. The identification of the key requirements for life enables scientists to focus life detection efforts onto planets and satellites that are considered habitable and more likely to support life. However, our ability to find life or detect signs of life is based on our understanding of life on Earth

    Experimental and simulation efforts in the astrobiological exploration of exooceans

    Get PDF
    The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core
    corecore