3 research outputs found

    Preface: International Conference on Recent Advancements in Biomedical Engineering - 2021

    Get PDF
    The editorial team welcomes all readers to the proceedings of International Conference on Recent Advancements in Biomedical Engineering (ICRABE-2021). The conference was inspired by the fusion of science and engineering principles in healthcare services and products. The conference aims to initiate exchange of innovative ideas between students, research scholar and faculties. Specifically, mechanical principles, power control for medical devices, nanomaterials and associated technologies were focused. This proceeding comprises of a broad spectrum of techniques to expose the recent advancements in the field of physics for healthcare application

    Synthesis, Characterization and Application of SnO<sub>2</sub>@rGO Nanocomposite for Selective Catalytic Reduction of Exhaust Emission in Internal Combustion Engines

    No full text
    In this experimental investigation, a procreation approach was used to produce a catalyst based on SnO2@rGO nanocomposite for use in a selective catalytic reduction (SCR) system. Plastic waste oil is one such alternative that helps to ensure the survival of fossil fuels and also lessens the negative impacts of improper waste disposal. The SnO2@rGO nanocomposite was prepared by fine dispersion of SnO2 nanoparticles on monolayer-dispersed reduced graphene oxide (rGO) and carefully investigated for its potential in adsorbing CO, CO2, NOX, and hydrocarbon (HC). The as-synthesized SnO2@rGO nanocomposite was characterized by Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy, scanning electron microscopy, X-ray diffraction spectroscopy, thermogravimetry, and surface area analyses. Then, the impact of catalysts inside the exhaust engine system was evaluated in a realistic setting with a single-cylinder, direct-injection diesel engine. As a result, the catalysts reduced harmful pollution emissions while marginally increasing brake-specific fuel consumption. The nanocomposite was shown to exhibit higher NOX adsorption efficiencies when working with different toxic gases. Maximum reductions in the emission of NOX, hydrocarbons, and CO were achieved at a rate of 78%, 62%, and 15%, respectively. These harmful pollutants were adsorbed on the active sites of catalyst and are converted to useful fuel gases through catalytic reduction thereby hindering the trajectory of global warming
    corecore