6 research outputs found

    Endophilin regulates JNK activation through its interaction with the germinal center kinase-like kinase

    Get PDF
    The endophilin family of proteins function in clathrin-mediated endocytosis. Here, we have identified and cloned the rat germinal center kinase-like kinase (rGLK), a member of the GCK (germinal center kinase) family of e-Jun N-terminal kinase (JNK) activating enzymes, as a novel endophilin I-binding partner. The interaction occurs both in vitro and in cells and is mediated by the Src homology 3 domain of endophilin I and a region of rGLK containing the endophilin consensus-binding sequence PPRPPPPR. Overlay analysis of rat brain extracts demonstrates that endophilin I is a major Src homology 3 domain-binding partner for rGLK. Overexpression of full-length endophilin I activates rGLK-mediated JNK activation, whereas N- and C-terminal fragments of endophilin I block JNK activation. Thus, endophilin I appears to have a novel function in JNK activation

    SH3 domain-dependent interactions of endophilin with amphiphysin

    Get PDF
    AbstractAmphiphysin I and II are nerve terminal-enriched proteins thought to function in synaptic vesicle endocytosis. In addition to a C-terminal SH3 domain, the proteins contain a highly conserved putative SH3 binding site and numerous consensus phosphorylation sites. We now demonstrate that amphiphysin I but not amphiphysin II is a phosphoprotein which undergoes dephosphorylation during nerve terminal depolarization. Further, both amphiphysin I and II interact with the SH3 domain of endophilin, a synaptically enriched protein implicated in synaptic vesicle endocytosis. The interaction is direct and mediated through a 43 amino acid region of amphiphysin containing the putative SH3 binding site. These data further support a role for amphiphysin I, II and endophilin in synaptic vesicle endocytosis

    Binding of Ras to phosphoinositide 3-kinase p110? is required for Ras- driven tumorigenesis in mice

    Get PDF
    Ras proteins signal through direct interaction with a number of effector enzymes, including type I phosphoinositide (PI) 3-kinases. Although the ability of Ras to control PI 3-kinase has been well established in manipulated cell culture models, evidence for a role of the interaction of endogenous Ras with PI 3-kinase in normal and malignant cell growth in vivo has been lacking. Here we generate mice with mutations in the Pi3kca gene encoding the catalytic p110? isoform that block its interaction with Ras. Cells from these mice show proliferative defects and selective disruption of signaling from growth factors to PI 3-kinase. The mice display defective development of the lymphatic vasculature, resulting in perinatal appearance of chylous ascites. Most importantly, they are highly resistant to endogenous Ras oncogene-induced tumorigenesis. The interaction of Ras with p110? is thus required in vivo for certain normal growth factor signaling and for Ras-driven tumor formation
    corecore