19 research outputs found

    Appositional enamel growth in molars of South African fossil hominids

    No full text
    Enamel is formed incrementally by the secretory activity of ameloblast cells. Variable stages of secretion result in the formation of structures known as cross striations along enamel prisms, for which experimental data demonstrate a correspondence with daily periods of secretion. Patterns of variation in this daily growth are important to understanding mechanisms of tooth formation and the development of enamel thickness. Transmitted light microscopy (TLM) of histological ground sections and scanning electron microscopy (SEM) of bulk specimens or their surface replicas are the usual methods for investigating cross striations. However, these methods pose some constraints on the study of these features in Plio-Pleistocene hominid enamel, the specimens of which may only rarely be sectioned for TLM or examined on only their most superficial surfaces for SEM. The recent development of portable confocal scanning optical microscopy (PCSOM) resolves some of the restrictions on fractured enamel surfaces, allowing the visualization of cross striations by direct examination. This technology has been applied here to the study of Australopithecus africanus and Paranthropus robustus hominid molars from the Plio-Pleistocene of South Africa. We hypothesize that these taxa have increased enamel appositional rates compared with modern humans, because despite having thicker enamelled molars (particularly P. robustus), the enamel crowns of these fossil taxa take an equivalent or reduced amount of time to form. Cross striations were measured in cuspal, lateral and cervical regions of the enamel crowns, and, within each region, the inner, middle and outer zones. Values obtained for A. africanus outer zones of the enamel crown are, in general, lower than those for P. robustus, indicating faster forming enamel in the latter, while both taxa show higher rates of enamel growth than modern humans and the African great apes. This demonstrates a relatively high degree of variability in the mechanisms underlying the development of enamel across taxa

    Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution

    Get PDF
    Evolutionary novelties in the skeleton are usually expressed as changes in the timing of growth of features intrinsically integrated at different hierarchical levels of development(1). As a consequence, most of the shape- traits observed across species do vary quantitatively rather than qualitatively(2), in a multivariate space(3) and in a modularized way(4,5). Because most phylogenetic analyses normally use discrete, hypothetically independent characters(6), previous attempts have disregarded the phylogenetic signals potentially enclosed in the shape of morphological structures. When analysing low taxonomic levels, where most variation is quantitative in nature, solving basic requirements like the choice of characters and the capacity of using continuous, integrated traits is of crucial importance in recovering wider phylogenetic information. This is particularly relevant when analysing extinct lineages, where available data are limited to fossilized structures. Here we show that when continuous, multivariant and modularized characters are treated as such, cladistic analysis successfully solves relationships among main Homo taxa. Our attempt is based on a combination of cladistics, evolutionary- development- derived selection of characters, and geometric morphometrics methods. In contrast with previous cladistic analyses of hominid phylogeny, our method accounts for the quantitative nature of the traits, and respects their morphological integration patterns. Because complex phenotypes are observable across different taxonomic groups and are potentially informative about phylogenetic relationships, future analyses should point strongly to the incorporation of these types of trait
    corecore