21 research outputs found

    Comparative studies on the corrosion inhibition efficacy of ethanolic extracts of date palm leaves and seeds on carbon steel corrosion in 15% HCl solution

    Get PDF
    The work reports on the study carried out to comparatively assess the corrosion inhibition efficacy of crude ethanolic extracts of date palm leaves and seeds on X60 carbon steel corrosion in 15% HCl solution at 25–60 °C. The corrosion inhibition studies was carried out using weight loss and electrochemical (potentiodynamic polarization and linear polarization resistance) techniques. Preliminary phytochemical screening was performed in order to determine the phytoconstituents present in the crude extracts. The influence of extractive solvents on the corrosion inhibition performance of the extracts was also investigated. It is found that the crude extracts of both date palm leaves and seeds contain saponins, flavonoids, cardiac glycosides and reducing sugars. Tannins is only present in the leaves and absent in the seeds while anthraquinones is absent in both extracts. The crude ethanolic extracts inhibited the corrosion of X60 steel in the aggressive 15% HCl solution with the leaves extract showing superior performance. Inhibition efficiency increased with increase in concentration of the extracts and temperature. Potentiodynamic polarization results reveal that the extracts function as mixed type inhibitors. Corrosion inhibition occurs by virtue of adsorption of components of the extract on the steel surface and was found to follow Langmuir adsorption isotherm model. On the influence of the extractive solvents on the corrosion inhibition performance, the order of inhibition efficiency at 60 °C follows the trend DPLAE (73.6%) > DPLEE (62.5%) > DPSAE (59.9%) > DPSEE (55.9%) with the optimum extract concentration (2000 ppm) studied

    Effect of Intensifier Additives on the Performance of Butanolic Extract of Date Palm Leaves against the Corrosion of API 5L X60 Carbon Steel in 15 wt.% HCl Solution

    Get PDF
    The quest to replace toxic chemicals in the nearest future is revolutionizing the corrosion inhibitor research world by turning its attention to plant biomaterials. Herein, we report the corrosion inhibiting potential of butanolic extract of date palm leaves (BUT) on the corrosion of API 5L X60 carbon steel in 15 wt.% HCl solution. The mass loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), linear polarization (LPR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), and atomic force microscopy (AFM) techniques were employed in the investigation. We also report the effect of intensifier additives, namely formic acid (FA), potassium iodide (KI), and zinc nitrate (Zn(NO3)2) as well as temperature on the corrosion inhibiting performance of BUT. BUT exhibits inhibiting ability but the extent of inhibition is dependent on concentration, temperature, and intensifiers’ concentration. At 25 �C, 200 mg/L BUT and 700 mg/L BUT protected the carbon steel surface by 50% and 88%, respectively. The addition of 3 mM FA and 5 mM KI to 200 mg/L upgraded the extract performance to 97% and 95%, respectively. Zn(NO3)2 performs poorly as an intensifier for BUT under acidizing conditions. The adsorption of BUT + FA and BUT + KI is synergistic in nature whereas that of BUT + Zn(NO3)2 drifts towards antagonistic behavior according to the calculated synergism parameter. Increase in the system temperature resulted in a slight decline in the inhibition efficiency of BUT + FA and BUT + KI but with efficiency of above 85% achieved at 60 �C. The SEM and AFM results corroborate results from the electrochemical techniques

    A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals

    Get PDF
    Plant biomaterials as inexpensive, nontoxic, biodegradable materials are found abundantly in nature. They contain heteroatoms and/or pi electrons that make them candidate for metals corrosion inhibitor. In recent years, numerous research works have been undertaken on plant biomaterials as metals corrosion inhibitor in different corrosive media. This review critically looks at the researches done in the years 2013–2018. Corrosive environments covered include acidic, basic, neutral, aqueous, geothermal fluid and artificial saliva. The major findings and the mechanism of inhibition has been elucidated. The missing gap in this area of research has been pointed out and future direction proposed

    Elucidation of corrosion inhibition property of compounds isolated from Butanolic Date Palm Leaves extract for low carbon steel in 15% HCl solution: Experimental and theoretical approaches

    Get PDF
    The present work reports on the corrosion inhibition property of compounds isolated from butanolic extract of Date Palm leaves for low carbon steel in 15% HCl solution. Six compounds were isolated from Date Palm leaves and purified using a combination of column chromatography, thin layer chromatography, and Prep HPLC-MS system. The isolated compounds were characterized using 1H NMR, 13C NMR, and GC–MS. Their identity was revealed to be a mixture of fatty alkanes, oleanolic acid (OA), vanillyl alcohol (VA), b-Sitosterol-3-O-b-D-glucoside (b-SSG), sucrose sugar, and carotenoid lutein. As a result of the amount of the different isolates obtained, only three out of the six compounds namely b-SSG, OA, and VA were tested for anticorrosion property for low carbon steel in 15% HCl. The corrosion inhibition of the isolated compounds was performed using weight loss and electrochemical techniques. Surface morphology analysis of the corroded steel in the absence and presence of the isolated compounds was undertaken using SEM/EDAX and 3D optical profilometer. Also, DFT calculations was performed in order to indicate the reactivities and bonding sites of the isolated molecules as well as Monte Carlos simulations (MCS) to determine the energy of interaction between the inhibitors and carbon steel surface. Results obtained show that the values of inhibition efficiency (IE) for the different isolated compounds at the concentration (35 ppm) studied follow the trend: b-SSG (46.57%) > VAisolated (39.30%) > VAcommercial (36.81%) > OA (31.94%) at 25 �C. It is also noted that, for the isolated OA, IE increased with increase in concentration but decreased with increase in temperature. For isolated VA, IE decreased with increase in temperature. However, for the commercial VA, IE slightly increased with rise in temperature. The experimental results are in agreement with the theoretical prediction. In both predicted and experimental results, b-SSG is the best corrosion inhibitor

    Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives

    Get PDF
    Metallic pipelines and gathering tanks play a vital role during oil and gas exploration, production, transmission, and processing. These facilities are usually attacked by corrosion. The use of corrosion inhibitors is one of the most economical and reliable approaches to control the corrosion of oil and gas metallic facilities. This paper looks at the progress made in the development of sour corrosion inhibitors from early 1900 to date. Scientific literatures were reviewed. The review identified four classes of organic corrosion inhibitors for sour environments, namely, amine-based, imidazoline-based, polymer-based, and Gemini-surfactant-based inhibitors. The strengths and weaknesses of these inhibitors were highlighted. The review revealed that the patronage of amine-based chemistries has declined, and the current technology is based on imidazoline and quaternary salt chemistries. The existing knowledge gap and the future research direction in the area of sour corrosion inhibitors development have been highlighted

    Ischemia-Reperfusion Injury and Pregnancy Initiate Time-Dependent and Robust Signs of Up-Regulation of Cardiac Progenitor Cells

    Get PDF
    To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Influence of Organic Acids and Related Organic Compounds on Corrosion Behavior of Stainless Steel—A Critical Review

    No full text
    Stainless steel is one of the most commonly used structural materials in industry for the transportation of liquids such as water, acids, and organic compounds. Corrosion is a major concern in industry due to the use of strong mineral acids, feedstock contamination, flow, aqueous environments, and high temperatures. Stainless steel is the most commonly used material in the petrochemical industry because of its characteristics of self-protectiveness, offered by thin passive oxides, and its metallurgical composition. However, chlorides and mineral acids attack the stainless steel continuously, consequently breaking down the passivation film, causing a continuous challenge from corrosion. The corrosion in stainless steel is influenced by many factors including flow rate, temperature, pressure, ethanol concentration, and chloride ion content. This review describes the impact of organic compounds and organic acids on the degradation behavior of stainless steel. The review also summarizes the commonly used organic compounds and their applications. It has been demonstrated that organic acid concentration, temperature, and halide impurities have significant effects on susceptibility to pitting corrosion by damaging the passivation film. The phenomenon of corrosion in stainless steel is quite different in immersion tests and electrochemical potentiodynamic polarization. This review article discusses the importance of organic compounds and their corrosion behavior on steel. The article also puts emphasis on the roles of corrosion inhibitors, monitoring methods, corrosion management, and forms of corrosion

    New Constituents from the Leaves of Date Palm (Phoenix dactylifera L.) of Saudi Origin

    No full text
    The phytochemical analysis of the butanolic extract from the leaves of date palm of Saudi origin resulted in the isolation of three major constituents, oleanolic acid (1), vanillyl alcohol (2), and β-sitosterol-3-O-β-d-glucoside (3), which had not been isolated from this plant or previously reported. Together, compounds 1 and 2 account for 1.0% of the butanol extract, which represents 0.4% of the mass of the dried leaves. The isolation of other known compounds for this plant such as fatty acids, lutein, and sucrose was also achieved in this study. The characterization and identification of the isolated compounds were conducted on the basis of Fourier-transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance (NMR), liquid chromatography–mass spectrometry (LC–MS), and gas chromatography–mass spectrometry (GC–MS) analyses. The findings of the current study will definitely increase the knowledge about the contribution of the constituents of this plant to its well-known nutrition, corrosion inhibition, and antimicrobial properties
    corecore