17 research outputs found

    Testing for heterotopia formation in rats after developmental exposure to selected in vitro inhibitors of thyroperoxidase

    Get PDF
    © 2021 The Authors. The thyroperoxidase (TPO) enzyme is expressed by the thyroid follicular cells and is required for thyroid hormone synthesis. In turn, thyroid hormones are essential for brain development, thus inhibition of TPO in early life can have life-long consequences for brain function. If environmental chemicals with the capacity to inhibit TPO in vitro can also alter brain development in vivo through thyroid hormone dependent mechanisms, however, remains unknown. In this study we show that the in vitro TPO inhibiting pesticide amitrole alters neuronal migration and induces periventricular heterotopia; a thyroid hormone dependent brain malformation. Perinatal exposure to amitrole reduced pup serum thyroxine (T4) concentrations to less than 50% of control animals and this insufficiency led to heterotopia formation in the 16-day old pup's brain. Two other in vitro TPO inhibitors, 2-mercaptobenzimidazole and cyanamide, caused reproductive toxicity and had only minor sporadic effects on the thyroid hormone system; consequently, they did not cause heterotopia. This is the first demonstration of an environmental chemical causing heterotopia, a brain malformation until now only reported for rodent studies with the anti-thyroid drugs propylthiouracil and methimazole. Our results highlight that certain TPO-inhibiting environmental chemicals can alter brain development through thyroid hormone dependent mechanisms. Improved understanding of the effects on the brain as well as the conditions under which chemicals can perturb brain development will be key to protect human health.ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel assessment strategies); (Kortenkamp et al., 2020) funded by the EU Horizon 2020 programme, grant number 825161

    Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project

    Get PDF
    The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation

    Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals—The ATHENA Project

    Get PDF
    Copyright © 2020 by the authors. The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.EU Horizon 2020 programme, grant number 82516
    corecore