189 research outputs found
Juvenile hemochromatosis associated with heterozygosity for novel hemojuvelin mutations and with unknown cofactors
Background & Aims. Juvenile hemochromatosis (JH) is a rare autosomal recessive disorder characterized by severe early-onset iron overload, caused by mutations in hemojuvelin (HJV), hepcidin (HAMP), or a combination of genes regulating iron metabolism. Here we describe two JH cases associated with simple heterozygosity for novel HJV mutations and unknown genetic factors. Case 1: A 12 year-old male from Central Italy with beta-thalassemia trait, increased aminotransferases, ferritin 9035 ng/ml and transferrin saturation 84%, massive hepatocellular siderosis and hepatic bridging fibrosis. Case 2: A 12 year-old female from Northern Italy with ferritin 467 ng/ml, transferrin saturation 87-95%, and moderate hepatic iron overload. Material and methods. Direct sequencing of hemochromatosis genes (HFE-TfR2-HJV-HAMP-FPN-1) was performed in the children and siblings. Results. In case 1, we detected heterozygosity for a novel HJV mutation (g.3659_3660insG), which was inherited together with the beta thalassemia trait from the father, who (as well as the mother) had normal iron parameters. In case 2, we detected another novel HJV mutation (g.2297delC) in heterozygosity, which was inherited from the mother, affected by mild iron deficiency. The father had normal iron stores. Both mutations are frameshifts determining premature stop codons. No other disease causing variant was detected. Conclusion. Although beta-thalassemia trait was a possible cofactor of iron overload in case 1, iron overload cannot be explained by simple heterozygosity for HJV mutations in both cases. Other genetic factors should be investigated, and further studies are needed to understand genotype-phenotype correlations in JH
Factors Associated with Adherence to the Mediterranean Diet among Adolescents Living in Sicily, Southern Italy
The present study aimed to examine the factors associated with increased Mediterranean diet (MD) adherence among a sample of Italian adolescents. A cross-sectional survey was conducted on 1135 students (13–16 years) attending 13 secondary schools of Sicily, southern Italy. Validated instruments were used for dietary assessment and the KIDMED score to assess adolescents’ adherence to the MD. A higher adherence to the MD was associated with high socioeconomic status (Odds Ratio [OR] 1.53, 95% Confidence Interval [CI]: 1.03–2.26) and high physical activity (OR 1.19, 95% CI: 1.02–1.70), whereas lower adherence was associated with living in an urban environment (OR 0.65, 95% CI: 0.44–0.97) and being obese (OR 0.59, 95% CI: 0.37–0.94). The adolescents’ KIDMED scores were inversely associated with adolescents’ intake of sweets, fast foods, fried foods, and sugary drinks, and directly with fruit, vegetables, pasta, fish, and cheese intakes. Urban-living adolescents were less likely to eat fruit and more prone to consume meat, sugary drinks, and fast food than rural-living adolescents. The latter were more likely to eat sweets and snacks. A general poor quality of food consumption in Italian adolescents away from the MD was reported, especially among those living in urban areas
A novel alpha1-antitrypsin null variant (PiQ0Milano)
Alpha1-antitrypsin deficiency is an autosomal recessive disease characterized by reduced serum levels of alpha1-antitrypsin (AAT) due to mutations in the SERPINA1 gene causing early onset pulmonary emphysema and, occasionally, chronic liver disease. We report an incidental finding of a novel null AAT allele, Q0Milano, consisting of a 17 nucleotides deletion in exon 3 of SERPINA1 gene, in an Italian child with persistently increased liver enzymes, a mild decrease in circulating AAT levels and without any pulmonary disease. Q0Milano variant results in an unfunctional protein lacking of AAT active site, as the resultant protein is truncated near PiS locus involved in AAT protein stability
Social disparities, health risk behaviors, and cancer
Background: Overall cancer incidence rates decreased in the most recent time period in both men and women, largely due to improvements in surgical therapeutic approaches (tertiary prevention) and screening programs (secondary prevention), but differences in cancer incidence and survival according to socioeconomic status are documented worldwide. Health risk behaviors, defined as habits or practices that increase an individual’s likelihood
of harmful health outcomes, are thought to mediate such inequalities.
Discussion: Obesity has been related with increased cancer incidence and mortality due to imbalance of leptin
and adiponectin which are connected to activation of PI3K, MAPK, and STAT3 pathways and decreasing insulin/insulin-like growth factor (IGF)-1 and mTOR signaling via activation of 5 AMP-activated protein kinase (AMPK), respectively. Physical activity has been associated to prevent cancer by the aforementioned obesity-related mechanisms, but also increasing level of circulating vitamin D, which has been related to lower risk of several cancers, and increasing prostaglandin F2a and reducing prostaglandin E2, which are both related with cancer prevention and promotion, respectively. A large number of different substances may induce themselves a direct cytotoxicity and mutagenic action on cells by smoking, whereas alcohol promote immune suppression, the delay of DNA repair, inhibition of the detoxification of carcinogens, the production of acetaldehyde, and the contribution to abnormal DNA methylation. The combined smoking and alcohol drinking habits have been shown to increase
cancer risk by smoke action of increasing the acetaldehyde burden following alcohol consumption and alcohol action of enhancing the activation of various procarcinogens contained in tobacco smoke.
Conclusions: Interventions at the social level may be done to increase awareness about cancer risks and promote changing in unhealthy behaviors
The TM6SF2 E167K genetic variant induces lipid biosynthesis and reduces apolipoprotein B secretion in human hepatic 3D spheroids
There is a high unmet need for developing treatments for nonalcoholic fatty liver disease (NAFLD), for which there are no approved drugs today. Here, we used a human in vitro disease model to understand mechanisms linked to genetic risk variants associated with NAFLD. The model is based on 3D spheroids from primary human hepatocytes from five different donors. Across these donors, we observed highly reproducible differences in the extent of steatosis induction, demonstrating that inter-donor variability is reflected in the in vitro model. Importantly, our data indicates that the genetic variant TM6SF2 E167K, previously associated with increased risk for NAFLD, induces increased hepatocyte fat content by reducing APOB particle secretion. Finally, differences in gene expression pathways involved in cholesterol, fatty acid and glucose metabolism between wild type and TM6SF2 E167K mutation carriers (N = 125) were confirmed in the in vitro model. Our data suggest that the 3D in vitro spheroids can be used to investigate the mechanisms underlying the association of human genetic variants associated with NAFLD. This model may also be suitable to discover new treatments against NAFLD
The A736V TMPRSS6 Polymorphism Influences Hepatic Iron Overload in Nonalcoholic Fatty Liver Disease
AIMS: Hepatic iron accumulation due to altered trafficking is frequent in patients with nonalcoholic fatty liver disease (NAFLD), and is associated with more severe liver damage and hepatocellular carcinoma. The p.Ala736Val TMPRSS6 variant influences iron metabolism regulating the transcription of the hepatic hormone hepcidin, but its role in the pathogenesis of iron overload disorders is controversial. Aim of this study was to evaluate the whether the TMPRSS6 p.Ala736Val variant influences hepatic iron accumulation in a well-characterized series of Italian patients with histological NAFLD.
METHODS: 216 patients with histological NAFLD. TMPRSS6 and HFE variants were assessed by allele specific PCR, liver histology by the NAFLD activity score and Perls' staining for iron.
RESULTS: Homozygosity for the p.736Val allele previously linked to higher hepcidin did not influence transferrin saturation (TS), but was associated with lower hepatic iron stores (p\u200a=\u200a0.01), and ferritin levels (median 223 IQR 102-449 vs. 308 IQR 141-618 ng/ml; p\u200a=\u200a0.01). Homozygosity for TMPRSS6 p.736Val was nearly associated with lower ballooning (p\u200a=\u200a0.05), reflecting hepatocellular damage related to oxidative stress. The influence of TMPRSS6 on hepatic iron accumulation was more marked in patients negative for HFE genotypes predisposing to iron overload (p.Cys282Tyr + and p.His63Asp +/+; p\u200a=\u200a0.01), and the p.736Val variant was negatively associated with hepatic iron accumulation independently of age, gender, HFE genotype, and beta-thalassemia trait (OR 0.59, 0.39-0.88).
CONCLUSIONS: The p.Ala736Val TMPRSS6 variant influences secondary hepatic iron accumulation in patients with NAFLD
Patatin-like phospholipase domain containing-3 gene I148M polymorphism, steatosis, and liver damage in hereditary hemochromatosis
AIM: To investigate whether the patatin-like phospholipase domain containing-3 gene (PNPLA3) I148M polymorphism is associated with steatosis, fibrosis stage, and cirrhosis in hereditary hemochromatosis (HH).
METHODS: We studied 174 consecutive unrelated homozygous for the C282Y HFE mutation of HH (C282Y+/+ HH) patients from Northern Italy, for whom the presence of cirrhosis could be determined based on histological or clinical criteria, without excessive alcohol intake (< 30/20 g/d in males or females) or hepatitis B virus and hepatitis C virus viral hepatitis. Steatosis was evaluated in 123 patients by histology (n = 100) or ultrasound (n = 23). The PNPLA3 rs738409 single nucleotide polymorphism, encoding for the p.148M protein variant, was genotyped by a Taqman assay (assay on demand, Applied Biosystems). The association of the PNPLA3 I148M protein variant (p.I148M) with steatosis, fibrosis stage, and cirrhosis was evaluated by logistic regression analysis.
RESULTS: PNPLA3 genotype was not associated with metabolic parameters, including body mass index (BMI), the presence of diabetes, and lipid levels, but the presence of the p.148M variant at risk was independently associated with steatosis [odds ratio (OR) 1.84 per p.148M allele, 95% confidence interval (CI): 1.05-3.31; P = 0.037], independently of BMI and alanine aminotransaminase (ALT) levels. The p.148M variant was also associated with higher aspartate aminotransferase (P = 0.0014) and ALT levels (P = 0.017) at diagnosis, independently of BMI and the severity of iron overload. In patients with liver biopsy, the 148M variant was independently associated with the severity (stage) of fibrosis (estimated coefficient 0.56 \ub1 0.27, P = 0.041). In the overall series of patients, the p.148M variant was associated with cirrhosis in lean (P = 0.049), but not in overweight patients (P = not significant). At logistic regression analysis, cirrhosis was associated with BMI 65 25 (OR 1.82, 95% CI: 1.02-3.55), ferritin > 1000 ng/mL at diagnosis (OR 19.3, 95% CI: 5.3-125), and with the G allele in patients with BMI < 25 (OR 3.26, 95% CI: 1.3-10.3).
CONCLUSION: The PNPLA3 I148M polymorphism may represent a permissive factor for fibrosis progression in patients with C282Y+/+ HH
- …