29 research outputs found

    Nothing lasts forever: Dominant species decline under rapid environmental change in global grasslands

    Get PDF
    Dominance often indicates one or a few species being best suited for resource capture and retention in a given environment. Press perturbations that change availability of limiting resources can restructure competitive hierarchies, allowing new species to capture or retain resources and leaving once dominant species fated to decline. However, dominant species may maintain high abundances even when their new environments no longer favour them due to stochastic processes associated with their high abundance, impeding deterministic processes that would otherwise diminish them. Here, we quantify the persistence of dominance by tracking the rate of decline in dominant species at 90 globally distributed grassland sites under experimentally elevated soil nutrient supply and reduced vertebrate consumer pressure. We found that chronic experimental nutrient addition and vertebrate exclusion caused certain subsets of species to lose dominance more quickly than in control plots. In control plots, perennial species and species with high initial cover maintained dominance for longer than annual species and those with low initial cover respectively. In fertilized plots, species with high initial cover maintained dominance at similar rates to control plots, while those with lower initial cover lost dominance even faster than similar species in controls. High initial cover increased the estimated time to dominance loss more strongly in plots with vertebrate exclosures than in controls. Vertebrate exclosures caused a slight decrease in the persistence of dominance for perennials, while fertilization brought perennials' rate of dominance loss in line with those of annuals. Annual species lost dominance at similar rates regardless of treatments. Synthesis. Collectively, these results point to a strong role of a species' historical abundance in maintaining dominance following environmental perturbations. Because dominant species play an outsized role in driving ecosystem processes, their ability to remain dominant—regardless of environmental conditions—is critical to anticipating expected rates of change in the structure and function of grasslands. Species that maintain dominance while no longer competitively favoured following press perturbations due to their historical abundances may result in community compositions that do not maximize resource capture, a key process of system responses to global change.Fil: Wilfahrt, Peter A.. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Biederman, Lori. Iowa State University; Estados UnidosFil: Bugalho, Miguel N.. Universidade Nova de Lisboa; PortugalFil: Cadotte, Marc W.. University of Toronto–Scarborough; Estados UnidosFil: Caldeira, Maria C.. Universidade Nova de Lisboa; PortugalFil: Catford, Jane A.. University of Melbourne; AustraliaFil: Chen, Qingqing. Peking University; China. German Centre for Integrative Biodiversity Research; AlemaniaFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Ebeling, Anne. University of Jena; AlemaniaFil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; Alemania. Leipzig University; AlemaniaFil: Haider, Sylvia. Martin Luther University Halle-Wittenberg; Alemania. Leuphana University of Lüneburg; AlemaniaFil: Heckman, Robert W.. University of Texas; Estados Unidos. United States Forest Service; Estados UnidosFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Koerner, Sally E.. University of North Carolina Greensboro; Estados UnidosFil: Komatsu, Kimberly J.. University of North Carolina Greensboro; Estados UnidosFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: MacDougall, Andrew. University of Guelph; CanadáFil: Smith, Nicholas G.. Texas Tech University; Estados UnidosFil: Stevens, Carly J.. Lancaster University; Reino UnidoFil: Sullivan, Lauren L.. Michigan State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tedder, Michelle. University of KwaZulu-Natal; SudáfricaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; ArgentinaFil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Veen, Ciska. Netherlands Institute of Ecology; Países BajosFil: Wheeler, George. University of Nebraska-Lincoln; Estados UnidosFil: Young, Alyssa L.. University of North Carolina Greensboro; Estados UnidosFil: Young, Hillary. University of California; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados Unido

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (\u3c50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities

    Opposing community assembly patterns for dominant and jonnondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.Fil: Arnillas, Carlos Alberto. University of Toronto Scarborough; CanadáFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Alberti, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Baez, Selene. Escuela Politécnica Nacional; EcuadorFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Boughton, Elizabeth H.. Archbold Biological Station; Estados UnidosFil: Buckley, Yvonne M.. Trinity College Dublin; IrlandaFil: Bugalho, Miguel Nuno. Universidad de Lisboa; PortugalFil: Donohue, Ian. Trinity College Dublin; IrlandaFil: Dwyer, John. University of Queensland; AustraliaFil: Firn, Jennifer. The University of Queensland; AustraliaFil: Gridzak, Riley. Queens University; CanadáFil: Hagenah, Nicole. University of Pretoria; SudáfricaFil: Hautier, Yann. Utrecht University; Países BajosFil: Helm, Aveliina. University of Tartu; EstoniaFil: Jentsch, Anke. University of Bayreuth; AlemaniaFil: Knops, Johannes M. H.. Xi'an Jiaotong Liverpool University; China. University of Nebraska; Estados UnidosFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laanisto, Lauri. Estonian University of Life Sciences; EstoniaFil: Laungani, Ramesh. Poly Prep Country Day School; Estados UnidosFil: McCulley, Rebecca. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Sur. Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural Río Gallegos; ArgentinaFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Sankaran, Mahesh. National Centre for Biological Sciences; IndiaFil: Schamp, Brandon. Algoma University; CanadáFil: Speziale, Karina Lilian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Standish, Rachel. Murdoch University; AustraliaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Cadotte, Marc W.. University of Toronto Scarborough; Canadá. University of Toronto; Canad

    Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally

    Get PDF
    Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.National Science Foundation; Natural Sciences and Engineering Research Council of Canada; Institute on the Environment, University of Minnesota and Portuguese Science Foundation.http://www.ecolevol.orghj2022Mammal Research InstituteZoology and Entomolog

    Transparent debugging of dynamically instrumented programs

    No full text

    Shadow Profiling: Hiding Instrumentation Costs with Parallelism

    No full text
    In profiling, a tradeoff exists between information and overhead. For example, hardware-sampling profilers incur negligible overhead, but the information they collect is con-sequently very coarse. Other profilers use instrumentation tools to gather temporal traces such as path profiles and hot memory streams, but they have high overhead. Runtime and feedback-directed compilation systems need detailed infor-mation to aggressively optimize, but the cost of gathering profiles can outweigh the benefits. Shadow profiling is a novel method for sampling long traces of instrumented code in parallel with normal execution, taking advantage of the trend of increasing numbers of cores. Each instrumented sample can be many millions of instructions in length. The primary goal is to incur negligible overhead, yet attain pro-file information that is nearly as accurate as a perfect pro-file. The profiler requires no modifications to the operating system or hardware, and is tunable to allow for greater coverage or lower overhead. We evaluate the performance and accuracy of this new profiling technique for two com-mon types of instrumentation-based profiles: interprocedu-ral path profiling and value profiling. Overall, profiles col-lected using the shadow profiling framework are 94 % accu-rate versus perfect value profiles, while incurring less than 1 % overhead. Consequently, this technique increases the vi-ability of dynamic and continuous optimization systems by hiding the high overhead of instrumentation and enabling the online collection of many types of profiles that were pre-viously too costly.

    Analyzing Dynamic Binary Instrumentation Overhead

    No full text
    Robust and powerful software instrumentation tools are essential for dynamic program analysis tasks such as profiling, performance evaluation, and bug detection. Dynamic binary instrumentation (DBI) is a general purpose technique that eases the development of program analysis tools by facilitating automatic low-level instrumentation. DBI-based program analysis can introduce high overhead and it is crucial for tool writers to minimize the cost. Analyzing the performance of instrumentation tools is challenging because most systems use a just-in-time compiler (JIT) to dynamically generate code. In this paper, we describe our method for analyzing the performance of instrumentation tools. The instrumented code is itself instrumented with basic block counters. We implement the profiler in Pin and use it to analyze the behavior of simple and complex instrumentation tools. The analysis yields several unexpected results about the dynamic behavior of instrumented programs. By examining these results, we often find effective solutions to improve performance

    Lower touch sensibility in the extremities of healthy Indians: further deterioration with age

    No full text
    Touch sensibility testing is a cost-effective, psychophysical measure of peripheral nerve function and impairment. However, there is limited information regarding the natural variability in touch sensibility across different populations and different age groups. We studied 568 healthy Indian volunteers without any clinical evidence of peripheral nerve disease. Touch sensibility was evaluated bilaterally in palms, feet, and heels, using Semmes-Weinstein monofilaments, with target forces ranging from 0.008 to 300 g. No differences were observed between the right and the left limbs. The lowest target force detected ranged from 0.4 to 2 g in the palms and 1.4 to 15 g in the feet. These values showed further increase with age. Women compared with men had higher sensibility in the palms in most age groups. Touch sensibility thresholds recorded in a large group of Indians were higher than that reported in other populations. These findings have clinical implications for the diagnosis of early nerve impairment in the elderly and in disease states drawing attention to geographic variations in touch sensation
    corecore