319 research outputs found

    Genetic mapping of retinitis pigmentosa implications for South African patients

    Get PDF
    No Abstract

    <i>P. berghei</i> telomerase subunit TERT is essential for parasite survival

    Get PDF
    Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA), though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO) homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR) in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF) analysis. TERT and TR were detected in blood stages and an average telomere length of ~950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert− mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further investigations to identify telomerase inhibitors to induce parasite cell death

    Salivary gland-specific <i>P. berghei</i> reporter lines enable rapid evaluation of tissue-specific sporozoite loads in mosquitoes

    Get PDF
    Malaria is a life-threatening human infectious disease transmitted by mosquitoes. Levels of the salivary gland sporozoites (sgs), the only mosquito stage infectious to a mammalian host, represent an important cumulative index of &lt;i&gt;Plasmodium&lt;/i&gt; development within a mosquito. However, current techniques of sgs quantification are laborious and imprecise. Here, transgenic &lt;i&gt;P. berghei&lt;/i&gt; reporter lines that produce the green fluorescent protein fused to luciferase (GFP-LUC) specifically in sgs were generated, verified and characterised. Fluorescence microscopy confirmed the sgs stage specificity of expression of the reporter gene. The luciferase activity of the reporter lines was then exploited to establish a simple and fast biochemical assay to evaluate sgs loads in whole mosquitoes. Using this assay we successfully identified differences in sgs loads in mosquitoes silenced for genes that display opposing effects on &lt;i&gt;P. berghei&lt;/i&gt; ookinete/oocyst development. It offers a new powerful tool to study infectivity of &lt;i&gt;P. berghei&lt;/i&gt; to the mosquito, including analysis of vector-parasite interactions and evaluation of transmission-blocking vaccines

    Molecular genetics improves the management of hereditary non-polyposis colorectal cancer

    Get PDF
    Background. The syndrome of hereditary non-polyposis colorectal cancer (HNPCC) can be diagnosed fairly accurately using clinical criteria and a family history. Identifying HNPCC helps to prevent large-bowel cancer, or allows cancer to be treated at an early stage. Once the syndrome has been diagnosed'a family member's risk can be judged approximately from a family tree, or it can now be predicted accurately if the causative mutation is known.Objective. This study involved attempts to improve the management of a family with HNPCC over a period of 10 years. Clinical diagnostic criteria, colonoscopic surveillance, surgical treatment, genetic counselling, molecular genetic research, and finally predictive genetic testing were applied as they evolved during this time.Subjects and methods. A rural general practitioner first noted inherited large-bowel cancer in the family and began screening subjects as they presented, using rigid sigmoidoscopy at the local hospital. At the time that the disorder was recognised as being HNPCC (1987), screening by means of colonoscopy at our university hospital was aimed primarily at first-degree relatives of affected individuals. After realising how many.were at risk, screening was brought closer to the family. A team of clinicians and researchers visited the local hospital to identify and counsel those at risk and to perform screening colonoscopy. Family members were recruited for research to find the gene and its mutation that causes the disease, to develop an accurate predictive test and to reduce the number of subjects undergoing surveillance colonoscopies.Results. There are approximately 500 individuals in this family. In the 10 years of this study the number of subjects who have been counselled for increased genetic risk or who have requested colonoscopic surveillance for HNPCC in this kindred has increased from 20 to 140. After the causative mutation was found in the hMLHl gene on chromosome 3, a test for it has reduced the number of subjects who need screening colonoscopy by over 70%. A protocol has been devised to inform family members, to acquire material for research in order to provide genetic counselling for (pre-test and post-test) risk, and to test for the mutation. Eventually, identifying those with the mutation should focus surveillance accurately.Conclusions. The benefits of restricting screening to subjects with the mutation that causes colorectal cancer and of performing operations to prevent cancer are hard to measure accurately. However, it is likely that at least half the family members will be able to avoid colonoscopic screening, some deaths from cancer should be prevented, and the cost of preventing and treating cancer in the family should fall substantially

    Ethical considerations in forensic genetics research on tissue samples collected post-mortem in Cape Town, South Africa

    Get PDF
    Background: The use of tissue collected at a forensic post-mortem for forensic genetics research purposes remains of ethical concern as the process involves obtaining informed consent from grieving family members. Two forensic genetics research studies using tissue collected from a forensic post-mortem were recently initiated at our institution and were the first of their kind to be conducted in Cape Town, South Africa. Main body: This article discusses some of the ethical challenges that were encountered in these research projects. Among these challenges was the adaptation of research workflows to fit in with an exceptionally busy service delivery that is operating with limited resources. Whilst seeking guidance from the literature regarding research on deceased populations, it was noted that next of kin of decedents are not formally recognised as a vulnerable group in the existing ethical and legal frameworks in South Africa. The authors recommend that research in the forensic mortuary setting is approached using guidance for vulnerable groups, and the benefit to risk standard needs to be strongly justified. Lastly, when planning forensic genetics research, consideration must be given to the potential of uncovering incidental findings, funding to validate these findings and the feedback of results to family members; the latter of which is recommended to occur through a genetic counsellor. Conclusion: It is hoped that these experiences will contribute towards a formal framework for conducting forensic genetic research in medico-legal mortuaries in South Africa

    Signatures of malaria-associated pathology revealed by high-resolution whole-blood transcriptomics in a rodent model of malaria.

    Get PDF
    The influence of parasite genetic factors on immune responses and development of severe pathology of malaria is largely unknown. In this study, we performed genome-wide transcriptomic profiling of mouse whole blood during blood-stage infections of two strains of the rodent malaria parasite Plasmodium chabaudi that differ in virulence. We identified several transcriptomic signatures associated with the virulent infection, including signatures for platelet aggregation, stronger and prolonged anemia and lung inflammation. The first two signatures were detected prior to pathology. The anemia signature indicated deregulation of host erythropoiesis, and the lung inflammation signature was linked to increased neutrophil infiltration, more cell death and greater parasite sequestration in the lungs. This comparative whole-blood transcriptomics profiling of virulent and avirulent malaria shows the validity of this approach to inform severity of the infection and provide insight into pathogenic mechanisms

    Association of variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon

    Get PDF
    BACKGROUND: Genetic variation at loci influencing adult levels of HbF have been shown to modify the clinical course of sickle cell disease (SCD). Data on this important aspect of SCD have not yet been reported from West Africa. We investigated the relationship between HbF levels and the relevant genetic loci in 610 patients with SCD (98% HbSS homozygotes) from Cameroon, and compared the results to a well-characterized African-American cohort. Methods and FINDINGS: Socio-demographic and clinical features were collected and medical records reviewed. Only patients >5 years old, who had not received a blood transfusion or treatment with hydroxyurea were included. Hemoglobin electrophoresis and a full blood count were conducted upon arrival at the hospital. RFLP-PCR was used to describe the HBB gene haplotypes. SNaPshot PCR, Capillary electrophoresis and cycle sequencing were used for the genotyping of 10 selected SNPs. Genetic analysis was performed with PLINK software and statistical models in the statistical package R. Allele frequencies of relevant variants at BCL11A were similar to those detected in African Americans; although the relationships with Hb F were significant (p <.001), they explained substantially less of the variance in HbF than was observed among African Americans (∼ 2% vs 10%). SNPs in HBS1L-MYB region ( HMIP ) likewise had a significant impact on HbF, however, we did not find an association between HbF and the variations in HBB cluster and OR51B5/6 locus on chromosome 11p, due in part to the virtual absence of the Senegal and Indian Arab haplotypes. We also found evidence that selected SNPs in HBS1L-MYB region ( HMIP ) and BCL11A affect both other hematological indices and rates of hospitalization. CONCLUSIONS: This study has confirmed the associations of SNPs in BCL11A and HBS1L-MYB and fetal haemoglobin in Cameroonian SCA patients; hematological indices and hospitalization rates were also associated with specific allelic variants
    • …
    corecore