4 research outputs found

    Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens

    Get PDF
    BACKGROUND: Aquaculture is one amongst the growing and major food producing sectors. Shrimp culture is one of the subsectors of aquaculture that attracts more attention because of the economic interest. However, the shrimp culture systems have been facing severe consequences and economical losses due to disease outbreaks. Risk of disease outbreak can be combated with the application of probiotics. For economically viable production of such probiotic products, the present study provides information on the optimization and partial purification of bacteriocin produced by a goat milk isolate Lactobacillus sp. MSU3IR against the shrimp bacterial pathogens. RESULTS: Bacteriocin production was estimated as a measure of bactericidal activity (arbitrary Unit/ml) over the test strains. The optimum culture conditions and media components for maximum bacteriocin production by Lactobacillus sp. MSU3IR were: pH: 5.0, temperature: 30°C, carbon source: lactose; nitrogen source: ammonium acetate; NaCl: 3.0% and surfactant: Tween 80. MRS medium was found to extend better bacteriocin production than other tested media. Upon partial purification of bacteriocin, the SDS-PAGE analysis had manifested the presence of two peptide bands with the molecular weight of 39.26 and 6.38 kDa, respectively. CONCLUSION: The present results provide baseline trend for the statistical optimization, scale up process and efficient production of bacteriocin by the candidate bacterial strain Lactobacillus sp. MSU3IR which could be used to replace the usage of conventional chemotherapeutics in shrimp culture systems

    Antifouling and toxic properties of the bioactive metabolites from the seagrasses Syringodium isoetifolium and Cymodocea serrulata

    Get PDF
    International audienceThe present study documents the antifouling and toxic properties of seagrasses Syringodium isoetifolium and Cymodocea serrulata. For that, the seagrasses S. isoetifolium and C. serrulata were extracted individually using organic solvents viz. dichloromethane, acetone and methanol. Amongst the extracts, the maximum antimicrofouling and antimacrofouling activities were exhibited by methanol extracts of both the seagrasses. The Minimal Inhibitory Concentration (MIC) of methanolic extracts of seagrasses was ranged from 1.0 to 10 mu g/ml against test biofilm bacteria and microalgal strains. Similarly, 100% fouling inhibition of limpet Patella vulgata was found at 6.0 mg/ml of methanolic extracts of seagrasses. The mussel Perna indica showed 50% of byssal production and attachment inhibition at 21.51 +/- 2.03, 17.82 +/- 1.07 mu g/ml and the anticrustaecean activity for 50% mortality of Anemia sauna was recorded at 732.14 +/- 921 and 394.16 +/- 5.16 mu g/ml respectively for methanolic extracts of S. isoetifolium and C serrulata. The minimal inhibitory and higher lethal concentrations of active methanol extracts shows it's less toxic nature. Based on the prolific results, methanol extracts of S. isoetifolium and C serrulata were subjected to purification using silica gel column and thin layer chromatography. Then the active compounds of the bioassay guided fractions were partially characterized using gas chromatography coupled with mass spectroscopy (GC-MS) and keyed out that fatty acids (C-16 to C-24) were the major components which responsible for the antifouling properties of the candidate seagrasse
    corecore