
Antifouling and toxic properties of the bioactive metabolites from the 

seagrasses Syringodium isoetifolium and Cymodocea serrulata 

 

Palanisamy Iyapparaj, Peranandam Revathi, Ramasamy Ramasubburayan, Santhiyagu Prakash, Arunachalam 

Palavesam, Grasian Immanuel, Perumal Anantharaman, Asmita Sautreau, Claire Hellio 

 

Abstract 

 

The present study documents the antifouling and toxic properties of seagrasses Syringodium isoetifolium and 

Cymodocea serrulata. For that, the seagrasses S. isoetifolium and C. serrulata were extracted individually 

using organic solvents viz. dichloromethane, acetone and methanol. Amongst the extracts, the maximum 

antimicrofouling and antimacrofouling activities were exhibited by methanol extracts of both the seagrasses. 

The Minimal Inhibitory Concentration (MIC) of methanolic extracts of seagrasses was ranged from 1.0 to 10 

mg/ml against test biofilm bacteria and microalgal strains. Similarly, 100% fouling inhibition of limpet Patella 

vulgata was found at 6.0 mg/ml of methanolic extracts of seagrasses. The mussel Perna indica showed 50% of 

byssal production and attachment inhibition at 21.51 ± 2.03, 17.82 ± 1.07 μg/ml and the anticrustaecean 

activity for 50% mortality of Artemia salina was recorded at 732.14 ± 9.21 and 394.16 ± 5.16 μg/ml 

respectively for methanolic extracts of S. isoetifolium and C. serrulata. The minimal inhibitory and higher 

lethal concentrations of active methanol extracts shows it's less toxic nature. Based on the prolific results, 

methanol extracts of S. isoetifolium and C. serrulata were subjected to purification using silica gel column and 

thin layer chromatography. Then the active compounds of the bioassay guided fractions were partially 

characterized using gas chromatography coupled with mass spectroscopy (GC-MS) and keyed out that fatty 

acids (C16 to C24) were the major components which responsible for the antifouling properties of the 

candidate seagrasses. 

 

 

1. Introduction 

 

Marine biofouling, can be defined as the growth of unwanted organisms on the surface of artificial structures 

immersed in water (Yebra et al., 2004; Buma et al., 2009). Biofouling causes huge material and economic costs 

of maintenance of mariculture, naval vessels, and seawater pipelines (Yebra et al., 2004). It is estimated that 

governments and industry spend over US $6.5 billion annually to prevent and control marine biofouling 

(Bhadury and Wright, 2004). Further, ecological implications of biofouling include increased carbon emission 

and potential dispersion of invasive alien species (Bellas, 2006; Floerl et al., 2009; Silkina et al., 2012). 
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Antifouling is the process of controlling or mitigating the settlement of fouling organisms on a surface. 

Commercial antifouling techniques include mechanical cleaning, biocides, toxic antifouling coatings and foul 

release or easy clean coatings. Amongst the above, antifouling paints containing toxic chemicals are the main 

strategies against biofouling in the past. Tributyltin (TBT) was the most effective component in antifouling 

paints which was detrimental, not readily degraded in the natural environments and had non-targeted toxicity 

on organisms (Konstantinou and Albanis, 2004). This property has led the International Maritime Organisation 

(IMO) to prohibit its application to ships since 17 September 2008 (Qian et al., 2010). The substitutes of TBT, 

such as Irgarol 1051 and Diuron, have also been found to be harmful to many non-target organisms 

(Konstantinou and Albanis, 2004; Zhou et al., 2006). 

 

Hence, alternative and environmentally acceptable, safe and effective antifouling substances are needed for 

incorporation into antifouling coatings, and these may include natural products isolated from certain marine 

organisms (Clare, 1996). Incorporation of natural repellent products into antifouling paints has been tried by 

some researchers (Armstrong et al., 2000; Peppiatt et al., 2000). For this, a wide range of marine natural 

products have been screened for their activity concerning antimicrobial, antifungal, antialgal and antilarval 

properties (reviewed by Clare, 1996; Fusetani, 2004; Dobretsov et al., 2006). Compounds with antifouling 

potential have been studied intensively in various marine sponges (Tsouletou et al., 2002; Hellio et al., 2005) 

and algae (De Nys et al., 1995; Maximilien et al., 1998; Sjogren et al., 2004).  

Marine natural products or crude extracts with antifouling activity have been reported from many marine 

organisms including marine bacteria, seaweeds, seagrasses, bryozoans, ascidians, cnidarians and sponges 

(Pawlik, 1992; Clare, 1996; Rittschof, 2001).  

 

Antifouling and biological activities of marine macrophytes have been extensively studied by many 

researchers in various species of mangroves (Chen et al., 2008), seaweeds (Silkina et al., 2012) and seagrasses 

(Mayavu et al., 2009; Prabhakaran et al., 2012). Seagrasses are a rich source of secondary metabolites, 

particularly phenolic compounds (McMillan et al., 1980). Seagrass phenolic compounds include sulfated 

flavonoids, a group of conjugated metabolites for which the sulfate component is believed to represent a 

marine adaptation (Harborne and Williams, 1976). Phenolic compounds are well known allelopathic agents 

present in terrestrial plants (Swain, 1977). In support of this suggestion, polyphenolic compounds have long 

been associated with reduced fouling in seaweeds (Jennings and Steinberg, 1997) and it has been proposed 

that eelgrass chemistry alters the composition of the epiphytic community (Harrison, 1982). In addition, the 

total concentration of phenolic compounds in Zostera marina was shown to increase in response to infection 

by Labyrinthula zostera (Vergeer et al., 1995), and a phenolic compound purified from this seagrass had 

antifouling activity (Todd et al. 1993). 

 



Considering the need for ecological safety and lack of information on natural antifouling compounds from 

marine flora, especially from seagrasses, the present work was undertaken to explore the antifouling, toxic 

properties of the seagrasses and also to investigate the bioactive constituents of Syringodium isoetifolium and 

Cymodocea serrulata. 

 

 

2. Materials and methods 

 

2.1. Seagrasses 

 

For the present study, the following seagrass species were selected for being free of epibionts during visual 

examination. The fresh leaves of S. isoetifolium (Order: Potamogetonales, Family: Cymodoceaceae) and C. 

serrulata (Order: Potamogetonales, Family: Cymodoceaceae) were collected from the Arockiapuram coast  

(Lat 8° 06’ 46.1″ Long 77° 33’ 21.9″) of Kanyakumari District, Tamilnadu, India. 

 

2.2. Extraction 

 

Collected seagrasses were washed thoroughly with sterile seawater to remove the extraneous dirt and 3% 

ethanol (97% distilled water: 3% ethanol) was used to wipe off the epiphytes. Then the seagrasses were dried 

well in an incubator at 30 1C and finely powdered using electrical grinder. Hundred grams of each seagrass 

powder were extracted individually in 500 ml organic solvent, including dichloromethane, acetone and 

methanol. Extraction was done in darkness, at room temperature: 20 ± 2 °C. The process was repeated thrice; 

extracts were pooled and filtered through Whatmann no. 1 filter paper. Each filtrate was dried under reduced 

pressure using a rotary evaporator. Dried extracts were weighed and stored in screw cap vials for further 

study. 

 

2.3. Test organisms 

 

Antimicrofouling activity of seagrass extracts were tested against 10 biofilm bacteria such as Pseudomonas 

aeruginosa JN979983, Halomonas aquamarina JN561698, Vibrio alginolyticus JN979984, Pantoea 

agglomerans JN979985, Serratia marcescens JN596118, Serratia liquefaciens JN596115, Vibrio fischeri 

JN979986, Vibrio parahaemolyticus JN585666, Shigella flexneri JN979987 and Aeromonas hydrophila 

JN561697 collected from the microbial culture collections of Centre for Marine Sciences and Technology, 

Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, India. To screen the antimicroalgal 

activity, five fouling microalgal strains such as Pleurosigma elongatum CASMB 001, Thalassiothrix frauenfeldii 

CASMB 002, Nitzschia sigma CASMB 003, Navicula longa CASMB 004 and Astreonellopsis glacialis CASMB 005 



were collected from the microalgal culture collections of CAS in Marine Biology, Annamalai University, 

Tamilnadu, India. The antimacrofouling property of the seagrass extracts was screened using the limpet 

Patella vulgata and brown mussel Perna indica. These animals were collected from the rocky surfaces of 

Manavalakurichi coast, (Lat. 8°8’ 35″ and Long. 77°8’ 00″), Kanyakumari District, Tamilnadu, India. For 

cytotoxicity assay, the brine shrimp Artemia salina was hatched out from the cysts (San Fransisco Bay, NC, 

USA). 

 

2.4. Antimicrofouling activity 

 

2.4.1. Antibacterial assay 

Antibacterial activity of seagrass extracts was assessed by following the method of Marechal et al. (2004). The 

assay was started with the inoculation of the same density of bacteria (2.108 cells/ml) using the table of 

Amsterdam (1996). 100 μl of each seagrass extract with the concentrations of 0.01, 0.1, 1.0, 10, 25, 50 and 

100 μg/ml were poured individually in 6 wells of 96 wells plate for each bacterial assay. In addition, 6 wells 

free of extracts were used as a control. These plates were dried under UV chamber for 2 h to evaporate the 

solvent under sterile condition. 100 ml of the bacterial suspension were then added under aseptic conditions 

and the plates were incubated at 30 °C for 48 h to allow the bacterial growth. One plate was used for each 

test bacterium to decrease the risk of contamination. The least concentration of extract where no turbidity 

was observed in at least 4 of the 6 wells was noted as the minimum inhibitory concentration (MIC). 

 

2.4.2. Anti-microalgal assay 

Similar to the antibacterial assay, anti-microalgal assay was also conducted with the same test concentrations 

of seagrass extracts using 96 well plates and the assay was started with the initial cell density of 1.0 x 105 

cells/ml. Then the plates were incubated under 20 lux light at 20 °C for 120 h. The least concentration of 

extract where no algal growth was observed in at least 4 of the 6 wells was recorded as the minimum 

inhibitory concentration (MIC) (Thabard et al., 2009). Based on the results, the methanolic extracts of both 

seagrass were selected for further study. 

 

2.5. Antimacrofouling activity 

 

2.5.1. Mollusc foot adherence assay 

P. vulgata is a common fouling organism found on rocky shores. The mollusc foot adherence assay is a rapid 

and reliable assay that requires a minimum quantity of test extract to determine its effect on the settlement 

of mollusc P. vulgata by spreading and shrinking of the foot. The assay was done in triplicate as per the 

method of Selvin and Lipton (2002) to determine the fouling (%) and regaining (%) ability of limpet P. vulgata 



against methanolic extracts of S. isoetifolium and C. serrulata using 1.0-6.0 mg/ml concentrations. The 

seawater without extract was used as the control. 

 

2.5.2. Mussel bioassay 

Mussels are one among the major fouling organisms that come under the category of hard fouling. In this 

context, a mussel bioassay was done by following the method of Wilsanand et al. (1999) and Murugan and 

Santhana Ramasamy (2003) using the brown mussel P. indica to explore the antifouling property of seagrass 

extracts. Test concentrations of seagrass extracts (0.1, 1.0, 10, 25, 50, 100, 200 and 400 μg/ml) were selected 

and the seawater without extract was used as the control. The assay was performed in triplicate. After 24 h, 

the EC50 (effective concentration for 50% inhibition of byssal production) and at 96 h, LC50 (lethal 

concentration for 50% mortality) were also estimated through probit analysis. The LC50/EC50 ratio of seagrass 

extracts was also calculated to assess the non-toxic property. 

 

2.5.3. Anticrustacean assay 

Anticrustacean assay is a simplest screening technique to study the repelling effects of bioactive compounds 

against the crustaeceous fouling organisms using Artemia as the model organism. The cysts of brine shrimp 

(A. salina) were hatched in a conical vessel (1 L) filled with filtered seawater under constant aeration for 24-48 

h. Ten active larvae (I instar) were collected from a brighter portion of the hatching chamber by using a 

capillary glass tube and placed in a test tube containing 10 ml of brine solution with varying concentrations (5, 

10, 25, 50, 100, 250, 500, and 1000 μg/ml) of crude extract of selected seagrasses. Seawater without extract 

was kept as control and maintained at room temperature for 24 h under light. After 24 h of exposure, the 

number of larvae surviving in each test concentration was counted and the LC50 values were analyzed by 

probit analysis and the percentage of larval mortality was calculated (Meyer et al., 1982). 

 

2.6. Chemistry of antifouling compounds 

 

2.6.1. Fractionation 

Potentially bioactive methanolic extracts (20 g) of each seagrass (S. isoetifolium and C. serrulata) were 

individually fractionated and purified with an Ace chromatography column (5.0 cm diameter x 61 cm length) 

filled with silica gel (60-200 μm mesh size) using elution gradiant of hexane (C6H14), chloroform (CHCl3) and 

methanol (MeOH). Twenty seven fractions (150 ml) were collected separately in a step gradient elution 

starting with 100% hexane and ending with 100% warmed methanol. All the fractions were individually tested 

for bioactivity and the seventh fraction (CHCl3 75%: MeOH 25%) of both the extracts exhibited antifouling 

potencies. The bioassay guided column fractions were then subjected to thin layer chromatography (Merck, 

TLC Silica gel F254) and visualized under UV chamber (282 and 326 nm) as well with p-anisaldehyde stain then 

the Rf values of the active compounds were documented. 



 

2.6.2. Partial characterization 

The GC_MS analysis of bioassay guided fractions of seagrass S. isoetifolium and C. serrulata were conducted 

individually using an Agilent GC_MS 5975 Inert XL MSD (United States) gas chromatography equipped with 

J&W 122-5532G DB-5ms 30 x 0.25 mm2 0.25 μm and mass detector (EM with replaceable horn) was operated 

in EMV mode. Helium was used as carrier gas with the flow rate of 1.0 ml min-1. The injection port 

temperature was operated at 250 °C. The column oven temperature was held at 80 °C for 2 min then 

programmed at 10 °C min-1 to 250 °C which was held for 0 min, and then at 5 °C min-1 to 280 °C which was 

held for 9 min. Electron impact spectra in positive ionization mode were acquired between m/z 50 and 550. 

For more accuracy, the peaks with prominent area and quality (˃70%) were alone considered and the 

constituents were identified by comparison with the internal standards of the instrument and spectral match 

with NIST library. 

 

2.7. Statistical analysis 

 

The data were analyzed using SPSS Version 16.0 software package. The differences between the experiment 

and control samples were determined using one-way ANOVAs followed by Dunnett's test at 95% confidence 

level for all antimacrofouling assays. Using probit analysis, the EC50 (concentration at which 50% of the 

inhibition of byssal production in mussel compared with the control) and LC50 (concentration at which 50% of 

mussels and artemia naupli were dead compared with the control) values of the mussel and anticrustaecean 

bioassays were calculated respectively. 

 

 

3. Results 

 

3.1. Antimicrofouling activities 

 

3.1.1. Antibacterial assay 

Extracts of C. serrulata and S. isoetifolium were found to inhibit the growth of test bacteria. Among the tested 

solvents, the methanolic extract of C. serrulata and S. isoetifolium showed better inhibitory activity compared 

with other solvents against the biofilm bacteria and the MIC was 1.0 μg/ml (Table 1). 

 

  



Table 1 

Antimicrofouling activities and minimum inhibitory concentration of seagrass extracts. 

 

Biofilm bacteria  S. isoetifolium extracts  C. serrulata extracts 

(μg/ml)   (μg/ml) 

D A M    D    A    M 

P. aeruginosa JN979983  10 25 1.0 10 25 10 

H. aquamarina JN561698 10 25 10 25 50 1.0 

V. alginolyticus JN979984 25 50 25 NI NI 10 

P. agglomerans JN979985 25 NI 1.0 25 25 1.0 

S. marcescens JN596118 10 25 10 10 50 1.0 

S. liquifaecians JN596115 50 50 10 50 10 10 

V. fischeri JN979986  10 NI 10 10 25 1.0 

V. parahaemolyticus JN585666  NI 50 25 25 50 10 

S. flexneri JN979987  25 25 1.0 25 50 25 

A. hydrophila JN561697  10 50 10 10 NI 1.0 

 

Microalgal strains 

P. elongatum CASMB 001 50 25 10 25 25 10 

T. frauenfeldii CASMB 002 10 50 25 50 10 1.0 

N. sigma CASMB 003  NI 10 1.0 NI 25 10 

N. longa CASMB 004  50 50 25 50 10 25 

A. glacialis CASMB 005  25 25 10 25 50 10 

 

Each value is obtained from 6 replicates; D: dichloromethane; A: acetone; M: methanol NI: no inhibition. 

 

 

3.1.2. Anti-microalgal assay 

Extracts of C. serrulata and S. isoetifolium were also found to inhibit the growth of test microalgae. However, 

MIC of 10 μg/ml for test microalgae was recorded by methanolic extract of S. isoetifolium. Anti-microalgal 

activity of methanolic extract of C. serrulata was observed at 1.0 μg/ml (Table 1). The results implied that the 

methanolic extracts exhibited better antimicrofouling activities than the acetone and dichloromethane 

extracts. 

 

  



3.2. Antimacrofouling activities 

 

3.2.1. Mollusc foot adherence assay 

During this assay, the percentage of fouling by limpet P. vulgata was decreased with subsequent increase in 

the concentration of seagrass extract from 1.0 to 6.0 mg/ml. Methanolic extracts of S. isoetifolium and C. 

serrulata showed 0% fouling (100% inhibition) at 6.0 mg/ml with 48.83 ± 2.05 and 45.6 ± 3.52% of limpet 

regaining their function when transferred to fresh seawater. The regaining ability and the behavioral changes 

such as spreading, shrinking, and attachment of the foot of P. vulgata was disturbed with increase in the 

concentration of seagrass extracts (Figs. 1 and 2). The variation in percentage of fouling and regaining of P. 

vulgata due to the concentration of seagrass extracts was statistically significant (P ˂ 0.05-0.0001). 

 

 

Fig. 1. Percentage of fouling and regaining of P. vulgata due to methanolic extract of S. isoetifolium. Each values are the 

mean ± SD of three observations. (a) P ˂ 0.05; (b) P ˂0.001; and (c) P ˂ 0.0001 significant; ns: non-significant. 

 

 

 

Fig. 2. Percentage of fouling and regaining of P. vulgata due to methanolic extract of C. serrulata. Each values are the 

mean ± SD of three observations. (a) P ˂ 0.05; (b) P ˂ 0.001; and (c) P ˂ 0.0001 significant; ns: non-significant. 

 



 

3.2.2. Mussel bioassay 

The effective concentration (EC50) in which 50% inhibition of byssal production and attachment for brown 

mussel P. indica was observed and the lethal concentration (LC50) represented 50% mortality of mussels. The 

EC50 values were 21.51 ± 2.03 and 17.82 ± 1.07 μg/ml at 24 h for the methanolic extract of S. isoetifolium and 

C. serrulata respectively. The LC50 values of 336.5 ± 3.12 and 293.2 ± 2.46 μg/ml were recorded during 72 h of 

experiment for the methanolic extract of S. isoetifolium and C. serrulata respectively. The LC50/EC50 ratios of S. 

isoetifolium and C. serrulata extracts were 16.45 and 15.64 (Table 2). 

 

Table 2 

EC50 and LC50 values of seagrass extracts during mussel bioassay. 

Seagrass aEC50 (μg ml 1) aLC50 (μg ml 1) LC50/EC50 

S. isoetifolium 21.51 ± 2.03 336.5 ± 3.12 15.64 

C. serrulata 17.82 ± 1.07 293.2 ± 2.46 16.45 

a Are the mean ± SD of three observations. 

 

3.2.3. Anticrustacean assay 

Brine shrimp, Artemia salina larvae was used as a model organism to test the cytotoxic properties of selected 

seagrass extracts. The results indicated that the cytotoxicity of methanolic extracts of both the seagrasses 

were minimal with the LC50 values of 732.14 ± 9.21 and 394.16 ± 5.16 μg/ml respectively. Besides, the 

percentage mortality of A. salina larvae was significantly (P ˂ 0.05) increased along with the hike in test 

concentration of extracts (Fig. 3). 

 

 

 

 

Fig. 3. Anticrustacean activity of methanolic extract of seagrasses. Each values are the mean ± SD of three 

observations. (a) P ˂ 0.05; (b) P ˂ 0.001; and (c) P ˂ 0.0001 significant; ns: non-significant. 



3.3. Chemistry of antifouling compounds 

 

3.3.1. Column chromatography 

In total, 27 column fractions (150 ml/fraction) were collected individually for both the seagrass extracts and 

evaporated under vacuum. Then the fractions were transferred to preweighed, labeled vials and tested for 

antifouling activity. Among the column fractions, the seventh fraction (CHCl3 75%: MeOH 25%) of S. 

isoetifolium weighing 356.2 mg and C. serrulata weighing 332.7 mg were expressed better antifouling activity 

against the test organisms. 

 

Distribution and pattern of compounds present in the bioassay guided fractions were documented by silica gel 

thin layer chromatography. The bioassay guided fraction of S. isoetifolium recorded five compounds with the 

Rf values of 0.40, 0.52, 0.68, 0.89 and 0.96. Similarly, the active column fraction of C. serrulata registered six 

compounds with the Rf values of 0.48, 0.55, 0.60, 0.70, 0.88 and 0.92. 

 

3.3.2. Partial characterization 

GC-MS chromatogram of the bioassay guided column fraction of S. isoetifolium showed the presence of five 

major peaks. The respective retention times (Rt) of individual peaks recorded were 0.00-16.050, 0.00-17.531, 

0.00-20.651, 0.00-20.778 and 0.00-27.960 min. The major phycoconstituents observed in the active fraction 

were 2-pentadecanone, 6,10,14-trimethyl, hexadecanoic acid methyl ester, 9, 12-octadecadienoic (Z,Z)-

methyl ester, 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) and 1,2-benzenedicar-boxylic acid diisooctyl 

ester 

 

However, GC-MS analysis of bioassay guided column fraction of C. serrulata displayed six major peaks with 

respective retention time (Rt) ranges viz. 0.00-16.017, 0.00-16.534, 0.00-21.109, 0.00-27.898, 0.00-30.149 and 

0.00-30.283 min. Thus, the active fraction unveiled the presence of 2-pentadecanone, 6,10,14-trimethyl, 1,2-

benzenedicarboxylic acid butyl 1,2-methylpropyl ester, octa-decanoic acid methyl ester, 1,2-

benzenedicarboxylic acid diisooctyl ester, oleic acid and erucic acid (Table 3). 

 

  



Table 3 

Bioactive components in bioassay guided column fractions of selected seagrasses. 

     

RT Name of the compound Molecular formula  

  Molecular weight  

   S. isoetifolium C. serrulata 

 Peak area (%) Quality (%) Peak area (%) Quality (%) 

16.050 2-Pentadecanone, 6,10,14-trimethyl C18H36O 268.4 2.82 99 9.76 91 

17.531 Hexadecanoic acid methyl ester C17H34O2 270.4 4.32 98 - - 

20.651 9,12-Octadecadienoic (Z,Z)-methyl ester C19H34O2 294.4 11.31 97 - - 

20.778 9,12,15-Octadecatrienoic acid methyl ester (Z,Z,Z) C19H32O2 292.4 6.90 95 - - 

27.960 1,2-Benzenedicarboxylic acid diisooctyl ester C24H38O4 390.5 1.11 86 5.77 87 

16.534 1,2-Benzenedicarboxylic acid, butyl 1,2-methylpropyl ester C16H22O4  278.3 - - 4.35 86 

21.109 Octadecanoic acid methyl ester C19H38O2 298.5 - - 2.64 90 

30.149 Oleic acid C18H34O2 282.4 - - 3.45 70 

30.283 Erucic acid C22H42O2 338.5 - - 15.68 94 

 

 

4. Discussion 

 

As the usage of conventional antifoulants is restricted, the search towards the identification of new 

alternative antifouling compounds with satisfactory performance and nonpolluting nature retain growing 

interest (Hellio et al., 2009; Dafforn et al., 2011). Since many sessile marine organisms have developed 

efficient defense mechanisms against microbial epibionts, there is an increasing interest in such organisms as 

a source of naturally released antifouling substances (Hellio et al., 2001; Bazes et al., 2006, 2009; Marechal 

and Hellio, 2009; Dafforn et al., 2011; Silkina et al., 2012). Seagrasses are the submerged and sessile marine 

angiosperms are found to resist the attachment of epibionts.  

 

In the present study, methanolic extracts of seagrasses such as S. isoetifolium and C. serrulata were found to 

show better antifouling activity by inhibiting the growth of biofilm bacteria and microalgae with the MIC's of 

1.0 and 10 μg/ml respectively which were better than the MIC's of 50 and 200 μg/ml recorded by  

Enhalus acoroides against bacteria (Qi et al., 2008). Supportively, Mayavu et al., (2009) reported the 

antibacterial activity of crude extracts (ethanol, methanol, acetone and dichloroethane) of seagrasses. 

Amongst that, ethanol and methanol extracts of S. isoetifolium and C. serrulata exhibited antagonistic activity 

against the bacteria isolated from boat hulls.  

 

The limpet P. vulgata adheres firmly to rocky surfaces or other hard substrata using the broad, flat gray-green 

foot and can cause extensive fouling and biodeterioration of submerged structures. The fouling inhibition in P. 

vulgata by a methanolic extract of the sea cucumber Holothuria scabra was found at 4.2 mg/ml concentration 



(Selvin and Lipton, 2002). Accordingly, in the present study the seagrass extracts showed 100% fouling 

inhibition at 4.0 mg/ml concentration. 

 

Mussels often close their shells and secrete fewer byssal threads with increasing concentration of the active 

extract and this may be an important criterion in improving the survivability and loss of attachment of mussels 

to the substrata during the experiment (Wilsanand et al. 1999). Hellio et al. (2000a, 2000b) reported inhibition 

of fouling organisms such as bacteria, fungi and mussels with less toxicity level by the extracts of brown algae 

Sargassum muticum and red algae Polysiphonia lanosa. The methanolic extract of Sargassum wightii at 205 

μg/ml concentration (EC50) inhibited the byssal production and attachment of mussel P. indica (Iyapparaj et 

al., 2012). 

 

Methanolic extracts of S. isoetifolium and C. serrulata inhibited the byssal production and attachment at the 

EC50 concentrations of 21.51 and 17.82 μg/ml respectively. These EC50 values were better than our previous 

report on antimussel potentials of S. wightii (Iyapparaj et al., 2012). The LC50/EC50 ratio is also known as 

therapeutic ratio, which is a common yardstick to measure the efficacy of a compound or extract. This ratio 

˃50 are often considered as non-toxic, a much higher LC50/EC50 ratio is highly recommended when selecting 

candidate compounds or the extracts for further study (Qian et al., 2010). Nevertheless, the LC50/EC50 ratio of 

the S. isoetifolium and C. serrulata extracts were found to be ˂50. Despite the fact, Iyapparaj et al. (2013) 

reported that the cellular level and biochemical changes in mussel P. indica due to the toxicity of methanolic 

extract of S. isoetifolium was lower than TBT. 

 

The cytotoxicity of the seagrass extracts was estimated by anticrustacean assay using A. salina. This assay also 

used to evaluate the bioactivity of extracts against marine fouling organisms, especially the crustaceous 

foulers like barnacles (Persoone and Castritsi-Catharios, 1989). The methanolic extracts of S. iso-etifolium and 

C. serrulata recorded a low cytotoxic property with the higher LC50 values of 732.14 ± 9.21 and 394.16 ± 5.16 

μg/ml respectively. The above results are consistent with the findings of Prabhadevi et al. (1998) and 

Ragupathi Raja Kannan et al. (2013).  

  

Only a few studies have been done on the bioactivity of seagrass and showed that seagrasses such as 

Thalassia testudinum, Posidonia oceanica and Z. marina had antibacterial (Harrison and Chan 1980, Devi et 

al., 1997a, Bhosale et al., 2002), antialgal (Harrison, 1982), antifungal (Jensen et al., 1998), antiviral 

(Premanathan et al., 1992), anti-inflammatory (Hua et al., 2006), toxicity (Devi et al., 1997b) and antifouling 

(Bhosale et al., 2002) activities. Chemical constituents of several seagrasses have also been described, 

including one antibiotic flavone glycoside from T. testudinum (Jensen et al., 1998), one sugar derivative from 

Ruppia maritima L. (Aquino et al., 2005), phenolic compounds from P. oceanica (Todd et al., 1993, Bushmann 



and Ailstock, 2006), diterpenes from R. maritima (Della Greca et al., 2000), and steroids and fatty acids from 

Zostera japonica (Gillan et al., 1984; Sanina et al., 2004; Hua et al., 2006). 

 

GC-MS analysis of bioassay guided fractions of S. isoetifolium and C. serrulata showed the presence of 10 

lipidic metabolites i.e. fatty acids and it's esters. In agreement with the present findings, Ragupathi Raja 

Kannan et al. (2012) also reported the fatty acid and it's esters as bioactive compounds from the candidate 

seagrasses. Similarly, the lipidic metabolites like fatty acids and galactoglycer-olipids from the seaweed S. 

muticum reported to have antifouling potential (Poluguerne et al., 2010). 

 

These bioactive compounds have been described to possess antimicrobial properties when derived from 

plants. Wagh et al. (2006) reported the antibacterial and antifungal activity of hexadecanoic acid methyl ester, 

9,12-octadecadienoic acid methyl ester and octadecanoic acid methyl ester. Yayli et al. (2005) evidenced the 

antibacterial and antifungal activity of 2-pentadecanone 6,10,14-trimethyl. An antimicrobial property of 1,2-

benzenedicarboxylic acid diisooctyl ester was described by Hema et al. (2011); however, in the present study, 

one of its esters 1,2-benzenedicarboxylic acid, bis (1,2- methylpropyl) ester also exhibited antifouling activity. 

Khoobchandani et al. (2010) reported the antibacterial activity of oleic and erucic acid. Similarly, 9,12,15-

octadecatrienoic acid was exhibited antibacterial and antifungal activities (Arunkumar and Muthuselvam, 

2009). 

 

The bioactive metabolites of seagrasses S. isoetifolium and C. serrulata may responsible for the antifouling 

activity. Hence, these seagrasses could be used as a source in the search for an alternate and safe remedy to 

biofouling. Further research on the individual chemical characterization of the antifouling metabolites using 

LC-MS and NMR is being directed in our laboratory. Also, field validation of the isolated bioactive components 

is needed. Testing the physical and chemical stability of these bioactive compounds with paint components 

will pave the way for the development of eco-friendly antifouling coatings. 
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