391 research outputs found

    Transport on weighted Networks: when correlations are independent of degree

    Full text link
    Most real-world networks are weighted graphs with the weight of the edges reflecting the relative importance of the connections. In this work, we study non degree dependent correlations between edge weights, generalizing thus the correlations beyond the degree dependent case. We propose a simple method to introduce weight-weight correlations in topologically uncorrelated graphs. This allows us to test different measures to discriminate between the different correlation types and to quantify their intensity. We also discuss here the effect of weight correlations on the transport properties of the networks, showing that positive correlations dramatically improve transport. Finally, we give two examples of real-world networks (social and transport graphs) in which weight-weight correlations are present.Comment: 8 pages, 8 figure

    Information filtering in complex weighted networks

    Get PDF
    Many systems in nature, society and technology can be described as networks, where the vertices are the system's elements and edges between vertices indicate the interactions between the corresponding elements. Edges may be weighted if the interaction strength is measurable. However, the full network information is often redundant because tools and techniques from network analysis do not work or become very inefficient if the network is too dense and some weights may just reflect measurement errors, and shall be discarded. Moreover, since weight distributions in many complex weighted networks are broad, most of the weight is concentrated among a small fraction of all edges. It is then crucial to properly detect relevant edges. Simple thresholding would leave only the largest weights, disrupting the multiscale structure of the system, which is at the basis of the structure of complex networks, and ought to be kept. In this paper we propose a weight filtering technique based on a global null model (GloSS filter), keeping both the weight distribution and the full topological structure of the network. The method correctly quantifies the statistical significance of weights assigned independently to the edges from a given distribution. Applications to real networks reveal that the GloSS filter is indeed able to identify relevantconnections between vertices.Comment: 9 pages, 7 figures, 1 Table. The GloSS filter is implemented in a freely downloadable software (http://filrad.homelinux.org/resources

    Systematic comparison of trip distribution laws and models

    Full text link
    Trip distribution laws are basic for the travel demand characterization needed in transport and urban planning. Several approaches have been considered in the last years. One of them is the so-called gravity law, in which the number of trips is assumed to be related to the population at origin and destination and to decrease with the distance. The mathematical expression of this law resembles Newton's law of gravity, which explains its name. Another popular approach is inspired by the theory of intervening opportunities which argues that the distance has no effect on the destination choice, playing only the role of a surrogate for the number of intervening opportunities between them. In this paper, we perform a thorough comparison between these two approaches in their ability at estimating commuting flows by testing them against empirical trip data at different scales and coming from different countries. Different versions of the gravity and the intervening opportunities laws, including the recently proposed radiation law, are used to estimate the probability that an individual has to commute from one unit to another, called trip distribution law. Based on these probability distribution laws, the commuting networks are simulated with different trip distribution models. We show that the gravity law performs better than the intervening opportunities laws to estimate the commuting flows, to preserve the structure of the network and to fit the commuting distance distribution although it fails at predicting commuting flows at large distances. Finally, we show that the different approaches can be used in the absence of detailed data for calibration since their only parameter depends only on the scale of the geographic unit.Comment: 15 pages, 10 figure

    Data-driven modeling of systemic delay propagation under severe meteorological conditions

    Get PDF
    The upsetting consequences of weather conditions are well known to any person involved in air transportation. Still the quantification of how these disturbances affect delay propagation and the effectiveness of managers and pilots interventions to prevent possible large-scale system failures needs further attention. In this work, we employ an agent-based data-driven model developed using real flight performance registers for the entire US airport network and focus on the events occurring on October 27 2010 in the United States. A major storm complex that was later called the 2010 Superstorm took place that day. Our model correctly reproduces the evolution of the delay-spreading dynamics. By considering different intervention measures, we can even improve the model predictions getting closer to the real delay data. Our model can thus be of help to managers as a tool to assess different intervention measures in order to diminish the impact of disruptive conditions in the air transport system.Comment: 9 pages, 5 figures. Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013

    Tweets on the road

    Full text link
    The pervasiveness of mobile devices, which is increasing daily, is generating a vast amount of geo-located data allowing us to gain further insights into human behaviors. In particular, this new technology enables users to communicate through mobile social media applications, such as Twitter, anytime and anywhere. Thus, geo-located tweets offer the possibility to carry out in-depth studies on human mobility. In this paper, we study the use of Twitter in transportation by identifying tweets posted from roads and rails in Europe between September 2012 and November 2013. We compute the percentage of highway and railway segments covered by tweets in 39 countries. The coverages are very different from country to country and their variability can be partially explained by differences in Twitter penetration rates. Still, some of these differences might be related to cultural factors regarding mobility habits and interacting socially online. Analyzing particular road sectors, our results show a positive correlation between the number of tweets on the road and the Average Annual Daily Traffic on highways in France and in the UK. Transport modality can be studied with these data as well, for which we discover very heterogeneous usage patterns across the continent.Comment: 15 pages, 17 figure

    Is spatial information in ICT data reliable?

    Get PDF
    An increasing number of human activities are studied using data produced by individuals' ICT devices. In particular, when ICT data contain spatial information, they represent an invaluable source for analyzing urban dynamics. However, there have been relatively few contributions investigating the robustness of this type of results against fluctuations of data characteristics. Here, we present a stability analysis of higher-level information extracted from mobile phone data passively produced during an entire year by 9 million individuals in Senegal. We focus on two information-retrieval tasks: (a) the identification of land use in the region of Dakar from the temporal rhythms of the communication activity; (b) the identification of home and work locations of anonymized individuals, which enable to construct Origin-Destination (OD) matrices of commuting flows. Our analysis reveal that the uncertainty of results highly depends on the sample size, the scale and the period of the year at which the data were gathered. Nevertheless, the spatial distributions of land use computed for different samples are remarkably robust: on average, we observe more than 75% of shared surface area between the different spatial partitions when considering activity of at least 100,000 users whatever the scale. The OD matrix is less stable and depends on the scale with a share of at least 75% of commuters in common when considering all types of flows constructed from the home-work locations of 100,000 users. For both tasks, better results can be obtained at larger levels of aggregation or by considering more users. These results confirm that ICT data are very useful sources for the spatial analysis of urban systems, but that their reliability should in general be tested more thoroughly.Comment: 11 pages, 9 figures + Appendix, Extended version of the conference paper published in the proceedings of the 2016 Spatial Accuracy Conference, p 9-17, Montpellier, Franc

    Hierarchical invasion of cooperation in complex networks

    Get PDF
    The emergence and survival of cooperation is one of the hardest problems still open in science. Several factors such as the existence of punishment, repeated interactions, topological effects and the formation of prestige may all contribute to explain the counter-intuitive prevalence of cooperation in natural and social systems. The characteristics of the interaction networks have been also signaled as an element favoring the persistence of cooperators. Here we consider the invasion dynamics of cooperative behaviors in complex topologies. The invasion of a heterogeneous network fully occupied by defectors is performed starting from nodes with a given number of connections (degree) k0. The system is then evolved within a Prisoner’s Dilemma game and the outcome is analyzed as a function of k0 and the degree k of the nodes adopting cooperation. Carried out using both numerical and analytical approaches, our results show that the invasion proceeds following preferentially a hierarchical order in the nodes from those with higher degree to those with lower degree. However, the invasion of cooperation will succeed only when the initial cooperators are numerous enough to form a cluster from which cooperation can spread. This implies that the initial condition has to be a suitable equilibrium between high degree and high numerosity. These findings have potential applications to the problem of promoting pro-social behaviors in complex networks
    • …
    corecore