2,103 research outputs found

    Properties of cotton, tencel and cotton/tencel blended ring- spun yarns

    Get PDF
    Yarn characteristics of pure cotton, 67:33 cotton/tencel blend, 33:67 cotton/tencel blend and pure tencel have been studied. Blending is done at draw frame. Machinery parameters are kept constant for studying the effect of fibre parameters on yarn characteristics. It is observed that the addition of tencel increases single yarn strength significantly at the higher tencel composition. Presence of tencel improves the elongation property. Packing fraction of tencel and tencel blended yarn is found to be more than that of cotton. Swelling diameter of pure cotton yarn is found to be lower than those of pure tencel and tencel/cotton blend yarns. Hairiness (H) decreases with the addition of tencel in the blend. It is also observed that the coefficient of friction (yarn- to- metal) of blend yarn reduces with the addition of tencel fibre in the blend

    Dimensional stability of cotton, tencel and tencel/cotton blend plain weft knitted fabrics

    Get PDF
    Pure cotton, 33/67 tencel/cotton, 67/33 tencel/cotton, and pure tencel yarns of 30 Ne count have been produced in the cotton spinning system and then used for knitting plain weft structure with three ranges of tightness factor to study their dimensional stability. Then knitted fabrics are subjected to dry, wet and tumble dry relaxations. Courses per inch(cpi), wales per inch(wpi), fabric thickness and areal density are measured at the end of each relaxation. Constants k1, k2, k3, k4 values for stitch density, cpi, wpi and loop shape factors are calculated using measured stitch length. Test results are subject to multilevel factorial analysis to determine factor contribution to the dimensional changes. It is found that the fibre contribution to the shrinkage is very less as compared to the contribution made by stitch length and relaxation treatments. Similarly, the quantum of length and width shrinkage is determined primarily by the stitch length (tightness factor). This is also confirmed by the calculation and comparison of loop shape factor. Thickness of the fabric is influenced significantly by relaxation treatment and fibre composition. Areal density is primarily determined by relaxation treatment and stitch length rather than by fibre composition. Hence, it is concluded that tencel and cotton are similar in dimensional characteristics

    Mixed Ionic and Electronic Conduction in Li_3PO_4 Electrolyte for a CO_2 Gas Sensor

    Get PDF
    An electrochemical CO_2 gas sensor using Li_2CO_3 and Li_2TiO_3+TiO_2 as sensing and reference electrodes, respectively, and Li_3PO_4 as the electrolyte is the subject of this paper. The sensor response to CO_2 gas showed a systematic deviation from the prediction of the Nernst equation at low pCO_2. Based on the electromotive force (emf) measurement, the transference numbers of Li_3PO_4, a lithium-ion conductor, were estimated for different pCO_2 values, and the conduction domain boundary for Li_3PO_4 separating n-type electronic conduction from ionic conduction was constructed. The conduction domain predicts that change in the Li activity in the sensing side of the cell drives the Li_3PO_4 electrolyte to a mixed (n-type electronic and ionic) conduction region at low pCO_2. Hebb-Wagner dc polarization measurements also indicate n-type electronic conduction in Li_3PO_4 with a mixture of Li_2CO_3 and gold as a reversible electrode. The transference numbers obtained from both the emf measurement and the Hebb-Wagner polarization measurements demonstrate that the origin of the non-Nernstian behavior of the CO_2 sensor is due to the lithium mass transport from the Li_2CO_3-sensing electrode to the Li_3PO_4 electrolyte, resulting in nonstoichiometry of Li_3PO_4 at temperatures above 500°C

    IN VITRO ANTICANCER POTENTIAL OF STATIN FROM ASPERGILLUS TAMARII GRD119

    Get PDF
    Objectives: Fungi have been largely targeted for their biopotential mainly in pharmaceutical industry. Recently, there has been an increase in screening of biopharmaceuticals from microorganisms so as to eliminate side-effects and chemical damages from non-natural sources.Methods: In the present study, Aspergillus tamarii GRD119 (JX110981) was screened for the production of statin by conducting bioassays against Candida and filamentous fungi.Results: Based on the results obtained showing effective inhibition potential against Candida spp and A. fumigatus, further analysis of purification of statin by several chromatographic analyses such as column chromatography, TLC, HPTLC and HPLC was conducted. The extracted statin shows strong cytotoxic activity against HEP G2 cell line.Conclusions: These results designate the fungal strain and the statin produced can serve as candidates for potential genetic transformation and further structural analysis respectively.Keywords: Aspergillus tamarii, chromatography, purification, statin, cytotoxicity

    Corrosion Inhibition of Mild Steel in Citric Acid by Aqueous Extract of Piper Nigrum L

    Get PDF
    Abstract: The inhibition efficiency (IE) of an aqueous extract of Piper Nigrum L. in controlling corrosion of mild steel at pH 12 has been evaluated by weight loss method in the absence and presence of inhibitor in citric acid medium at different concentration. The result showed that the corrosion inhibition efficiency of these compounds was found to vary with the different concentration at two hour time interval at room temperature. Also, it was found that the corrosion inhibition behaviour of Piper Nigrum L. is greater in 2 N Citric acid than 1 N Citric acid medium. So Piper Nigrum L. can be used has a good inhibitor for preventing mild steel material which is used in many construction purpose

    Chemical Modification on Reactive Dye Adsorption Capacity of Castor Seeds

    Get PDF
    Abstract: The roles played by four major functional groups (amine, carboxyl, azo, hydroxyl groups) in the biomass of castor seeds in adsorption of seven dyes were investigated. These functional groups in castor seeds were chemically modified individually to determine their contribution to the adsorption of ionic dyes. The dyes used were remazol red B, procino yellow, fast green FCF, brilliant cresyl blue, methylene blue, neutral red, red-141. It was found that hydroxyl group inhibited the adsorption of anionic dyes but it was major functional group in the adsorption of cationic dyes, hydroxyl group was important functional group in the adsorption of all seven dyes and the effect of methylation of amino group was not significant on the adsorption of seven dyes

    Lactobacillus fermentum LAB 9-fermented soymilk with enriched isoflavones and antioxidants improved memory In vivo

    Get PDF
    This study examined lactic acid bacteria (LAB)-fermented soymilk for their ability in hydrolyzing glucosides to aglycones and corresponding antioxidant capacity and memory enhancing effect. Twelve LAB isolated from Malaysian fermented food and milk products were incubated in commercially available soymilk for 48 h. Generally, soymilk supported LAB growth and significantly increased (p<0.05) conversion to bioactive aglycone by 2.1-6.5 fold when compared to unfermented soymilk. Lactobacillus fermentum LAB 9- fermented soymilk, in particular, was presented with increased total phenolic content (+10%) as opposed to unfermented soymilk. Lactobacilli (LAB 10-12)- and pediococci (LAB 5)-fermented soymilk elicited maximal DPPH radical-scavenging activity. LAB 1, 7, 8, 9 and 12 exhibited significantly higher (p<0.05) ferrous ion chelating activity when compared to control. Interestingly, LAB 9 had significantly improved memory deficit (p<0.05) in LPS-challenged mice. LAB-enriched nutritional value of soymilk could be useful against oxidative stress and memory deficit

    SCREENING AND PRODUCTION OF ANTICARCINOGENIC ENZYME FROM ESCHERICHIA COLI CTLS20: L - ASPARAGINASE

    Get PDF
    Objective: The objective of this study was attempted to screen the production of L-asparaginase from bacteria isolated from soil samples and its enzymatic activity.Methods: Screening of L-asparaginase was performed using phenol red indicator growth medium from which the positive strains were chosen based on the colour change. The enzyme production of L-asparaginase was established by submerged fermentation followed by the molecular detection of the efficient bacterial strains.Results: The enzyme production was undertaken by submerged fermentation with the evaluation of enzymatic activity and protein content. This revealed that the strain Escherichia coli CTLS20 produced a higher yield of L-asparaginase (30.22 IU/mg), 16.91 µg/ml of protein with the specific activity of 1.787 IU/mg when compared with other bacterial strains. The efficient bacterial strains were also confirmed by 16S rRNA sequence as Escherichia coli, Acinetobacter baumnnii, Klebsiella pneumoniae and the phylogenetic tree construction revealed the evolutionary relationship of the bacterial strains.Conclusion: This study indicated that the bacterial strain E. coli CTLS20 had the ability for the higher production of L-asparaginase. This novel higher yielding bacterial asparaginase is highly desirable as better alternatives in cancer therapy.Keywords: Soil, L-asparaginase, Submerged fermentation, E. coli, Phylogenetic tre

    Polymorphisms in pattern recognition receptor genes of indigenous and White Leghorn breeds of chicken

    Get PDF
    Functional polymorphisms in pattern recognition receptors (PRRs) modulate innate immunity and play a crucial role in resistance or susceptibility to diseases. The present study was carried out to explore polymorphic patterns in the coding sequences of PRR genes TLR3, TLR1LA (TLRs), MDA5, LGP2 (RLRs) and NOD1 (NLR) in chicken breeds of India, namely Ghagus (GH), Nicobari (NB) and the exotic White Leghorn (WLH) breed. Out of 209 SNPs observed in five genes among three breeds, 117 were synonymous (Syn) and 92 were non-synonymous (NS) SNPs. In TLR genes the highest polymorphism was observed in NB (16, 28) compared to GH (14, 16) and WLH (13, 19) breeds. In the MDA5 gene the highest polymorphism was observed in GH (12) compared to NB (eight) and WLH (four) breeds. However, an almost similar level of polymorphism was observed in the LGP2 gene among the three breeds. In the NOD1 gene, the highest polymorphism was observed in NB (27), followed by WLH (11) and GH (10) breeds. The overall highest number of SNPs was observed in NB (90), followed by GH (62) and the WLH (57) breed. With regard to variation in polymorphism among different classes of PRRs, the study revealed the highest polymorphism in TLRs compared to NOD1 and the RLR class of PRRs. Further, the domain locations of various Syn and NS SNPs in each PRR among the three breeds were identified. In silico analysis of NS SNPs revealed that most of them had a neutral effect on protein function. However, two each in TLR1LA and LGP2 and one in the MDA5 gene were predicted to be deleterious to protein function. The present study unravelled extensive polymorphism in the coding sequences of the TLR and NLR class of PRR genes, and the polymorphism was higher in indigenous chicken breeds.</p

    Thermal analysis of SUS 304 stainless steel using ethylene glycol/nanocellulose-based nanofluid coolant

    Get PDF
    Green cooling system usage in machining is getting favors to minimize the environmental effect such as pollutions. Around 20% of the machining cost is about coolant usage in flooded cooling technique. Even though coolant has a reasonably low cost, their handling and disposing cost are very high and also, threatening toxic contents, disposal of used coolant is a big problem as it can lead to hazardous effect to the machining operates as well as to the environment. As an alternative, a cooling technique known as minimum quantity lubrication (MQL) was introduced in the machining operation. For MQL technique, the coolant should exhibit superior properties which are effective in machining operation when compared with the conventional machining coolant which is metal working fluid (MWF). Owing to the technology advancements by nanotechnology in nanomaterial, the nanofluid is a promising coolant that can replace the conventional machining coolant. In the present work, ethylene glycol/nanocellulose-based nanofluid is evaluated in terms of its thermo-physical properties and its effectiveness in machining performances which is temperature distribution in cutting tool and compare its effectiveness with MWF. Its effectiveness is tested in turning machining operation of SUS 304 stainless steel using cemented tungsten-cobalt (WC-Co)-coated carbide cutting insert. The turning operation by using ethylene glycol/nanocellulose-based nanofluid coolant with 0.5 vol% which exhibit a superior thermal conductivity of 0.449 W/m K than 0.267 W/m K thermal conductivity of MWF at 30 °C. The recorded lower amount of heat transfer to the cutting tool is 863 J compared with 1130 J when using MWF. On the other hand, the maximum temperature reading recorded at chip formed by using MWF is 225 °C whereas by using nanofluid is 154 °C which promises lower temperature distribution to chip formed during the machining operation. Also, the functionality of nanofluid as a thermal transport during machining is proven via chip formation observation analysis and scanning electron microscope (SEM) with energy-dispersive X-ray (EDX) spectrum analysis
    corecore