86 research outputs found

    Clinical utility of vinblastine therapeutic drug monitoring for the treatment of infantile myofibroma patients:A case series

    Get PDF
    Infantile myofibroma is a rare, benign tumour of infancy typically managed surgically. In a minority of cases, more aggressive disease is seen and chemotherapy with vinblastine and methotrexate may be used, although evidence for this is limited. Chemotherapy dosing in infants is challenging, and vinblastine disposition in infants is unknown. We describe the use of vinblastine therapeutic drug monitoring in four cases of infantile myofibroma. Marked inter- and intrapatient variability was observed, highlighting the poorly understood pharmacokinetics of vinblastine in children, the challenges inherent in treating neonates, and the role of adaptive dosing in optimising drug exposure in challenging situations.</p

    Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia

    Get PDF
    Adults with acute lymphoblastic leukemia (ALL) do worse than children. From 7/2008 to 12/2014, Nordic and Baltic centers treated 1509 consecutive patients aged 1-45 years with Philadelphia chromosome-negative ALL according to the NOPHO ALL2008 without cranial irradiation. Overall, 1022 patients were of age 1-9 years (A), 266 were 10-17 years (B) and 221 were 18-45 years (C). Sixteen patients (three adults) died during induction. All others achieved remission after induction or 1-3 intensive blocks. Subsequently, 45 patients (12 adults) died, 122 patients relapsed (32 adults) with a median time to relapse of 1.6 years and 13 (no adult) developed a second malignancy. Median follow-up time was 4.6 years. Among the three age groups, older patients more often had higher risk ALL due to T-ALL (32%/25%/9%, PPeer reviewe

    A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor

    Get PDF
    © 2019 Elsevier Inc. Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death. Sin-Chan et al. uncover a C19MC-LIN28A-MYCN super-enhancer-dependent oncogenic circuit in embryonal tumors with multilayered rosettes (ETMRs). The circuit entraps an early neural lineage network to sustain embryonic epigenetic programming and is vulnerable to bromodomain inhibition, which promotes ETMR cell death

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    The molecular basis of E2A-HLF induced precursor-B cell acute lymphoblastic leukaemia in childhood

    No full text
    Translocation t(17;19)(q21-22;p13) occurs in a small subset (0.5-1%) of childhood precursor B (Pre-B) cell acute lymphoblastic leukaemia (ALL), and produces a chimeric transcription factor, E2A-HLF, which is a fusion oncoprotein. E2A-HLF expression confers a poor clinical outcome with a high risk of refractory relapse, and is associated with distinctive clinical features. Patients in the UK, currently diagnosed with this translocation are being stratified to receive “high risk” therapy protocol, including allogeneic bone marrow transplantation. Our group has identified six patients in the UK and Ireland with t(17;19)(q21-22;p13), and three from other parts of the world, in the last six years. These are in addition to the previously identified fourteen patients from a worldwide literature search. This extended patient base, coupled with poor outcome, necessitates an improved understanding of this translocation. We aimed to study the molecular aetiology of the leukaemia, and establish the molecular pathways involved. To study the molecular aetiology, we analysed six patients’ genomic DNA samples at diagnosis and/or relapse and the DNA extracted from their corresponding Guthrie cards (neonatal blood spots) by employing PCR based methods. We identified a type I genomic rearrangement in two of the patients, and a type II in one patient, at the region of the genomic fusion. Two other patients were identified with a unique type of rearrangement not classifiable as either type I or II. The mechanism of translocation in our patient samples, suggested an aberrant V(D)J rearrangement at the breakpoint region. Analysis of the Guthrie cards indicated the possibility of a prenatal origin for this translocation. We developed an in vitro inducible expression system (Tet-off) for E2A-HLF expression to understand the molecular pathways activated by this translocation. Murine foetal liver haematopoietic progenitor cells (HPC) were transduced with retroviral vectors expressing E2A-HLF in myeloid and lymphoid cultures. This allowed us to identify a gene expression profile for E2A-HLF from immortalised foetal liver HPC in methylcellulose and liquid culture. The downstream target genes of E2A-HLF identified in our study included Il15, Cd28, Kdr, Ccl9 and Ccl6. Further validation has been carried out on Il15 as a potential target of E2A-HLF
    corecore