194 research outputs found

    Thermoelectric power of cerium up to 6GPa

    Get PDF
    The thermoelectric power (TEP) of cerium has been measured up to 6 GPa. The results have been interpreted using the theories developed by Blandin et.al and Hirst

    Genetic variation among species, races, forms and inbred lines of lac insects belonging to the genus Kerria (Homoptera, Tachardiidae)

    Get PDF
    The lac insects (Homoptera: Tachardiidae), belonging to the genus Kerria, are commercially exploited for the production of lac. Kerria lacca is the most commonly used species in India. RAPD markers were used for assessing genetic variation in forty-eight lines of Kerria, especially among geographic races, infrasubspecific forms, cultivated lines, inbred lines, etc., of K. lacca. In the 48 lines studied, the 26 RAPD primers generated 173 loci, showing 97.7% polymorphism. By using neighbor-joining, the dendrogram generated from the similarity matrix resolved the lines into basically two clusters and outgroups. The major cluster, comprising 32 lines, included mainly cultivated lines of the rangeeni form, geographic races and inbred lines of K. lacca. The second cluster consisted of eight lines of K. lacca, seven of the kusmi form and one of the rangeeni from the southern state of Karnataka. The remaining eight lines formed a series of outgroups, this including a group of three yellow mutant lines of K. lacca and other species of the Kerria studied, among others. Color mutants always showed distinctive banding patterns compared to their wild-type counterparts from the same population. This study also adds support to the current status of kusmi and rangeeni, as infraspecific forms of K. lacca

    Trees on networks: resolving statistical patterns of phylogenetic similarities among interacting proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phylogenies capture the evolutionary ancestry linking extant species. Correlations and similarities among a set of species are mediated by and need to be understood in terms of the phylogenic tree. In a similar way it has been argued that biological networks also induce correlations among sets of interacting genes or their protein products.</p> <p>Results</p> <p>We develop suitable statistical resampling schemes that can incorporate these two potential sources of correlation into a single inferential framework. To illustrate our approach we apply it to protein interaction data in yeast and investigate whether the phylogenetic trees of interacting proteins in a panel of yeast species are more similar than would be expected by chance.</p> <p>Conclusions</p> <p>While we find only negligible evidence for such increased levels of similarities, our statistical approach allows us to resolve the previously reported contradictory results on the levels of co-evolution induced by protein-protein interactions. We conclude with a discussion as to how we may employ the statistical framework developed here in further functional and evolutionary analyses of biological networks and systems.</p

    A new, fast algorithm for detecting protein coevolution using maximum compatible cliques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The MatrixMatchMaker algorithm was recently introduced to detect the similarity between phylogenetic trees and thus the coevolution between proteins. MMM finds the largest common submatrices between pairs of phylogenetic distance matrices, and has numerous advantages over existing methods of coevolution detection. However, these advantages came at the cost of a very long execution time.</p> <p>Results</p> <p>In this paper, we show that the problem of finding the maximum submatrix reduces to a multiple maximum clique subproblem on a graph of protein pairs. This allowed us to develop a new algorithm and program implementation, MMMvII, which achieved more than 600× speedup with comparable accuracy to the original MMM.</p> <p>Conclusions</p> <p>MMMvII will thus allow for more more extensive and intricate analyses of coevolution.</p> <p>Availability</p> <p>An implementation of the MMMvII algorithm is available at: <url>http://www.uhnresearch.ca/labs/tillier/MMMWEBvII/MMMWEBvII.php</url></p

    Comparison of phylogenetic trees through alignment of embedded evolutionary distances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The understanding of evolutionary relationships is a fundamental aspect of modern biology, with the phylogenetic tree being a primary tool for describing these associations. However, comparison of trees for the purpose of assessing similarity and the quantification of various biological processes remains a significant challenge.</p> <p>Results</p> <p>We describe a novel approach for the comparison of phylogenetic distance information based on the alignment of representative high-dimensional embeddings (xCEED: Comparison of Embedded Evolutionary Distances). The xCEED methodology, which utilizes multidimensional scaling and Procrustes-related superimposition approaches, provides the ability to measure the global similarity between trees as well as incongruities between them. We demonstrate the application of this approach to the prediction of coevolving protein interactions and demonstrate its improved performance over the mirrortree, tol-mirrortree, phylogenetic vector projection, and partial correlation approaches. Furthermore, we show its applicability to both the detection of horizontal gene transfer events as well as its potential use in the prediction of interaction specificity between a pair of multigene families.</p> <p>Conclusions</p> <p>These approaches provide additional tools for the study of phylogenetic trees and associated evolutionary processes. Source code is available at <url>http://gomezlab.bme.unc.edu/tools</url>.</p

    BioPhysConnectoR: Connecting Sequence Information and Biophysical Models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most challenging aspects of biomolecular systems is the understanding of the coevolution in and among the molecule(s).</p> <p>A complete, theoretical picture of the selective advantage, and thus a functional annotation, of (co-)mutations is still lacking. Using sequence-based and information theoretical inspired methods we can identify coevolving residues in proteins without understanding the underlying biophysical properties giving rise to such coevolutionary dynamics. Detailed (atomistic) simulations are prohibitively expensive. At the same time reduced molecular models are an efficient way to determine the reduced dynamics around the native state. The combination of sequence based approaches with such reduced models is therefore a promising approach to annotate evolutionary sequence changes.</p> <p>Results</p> <p>With the <monospace>R</monospace> package <monospace>BioPhysConnectoR</monospace> we provide a framework to connect the information theoretical domain of biomolecular sequences to biophysical properties of the encoded molecules - derived from reduced molecular models. To this end we have integrated several fragmented ideas into one single package ready to be used in connection with additional statistical routines in <monospace>R</monospace>. Additionally, the package leverages the power of modern multi-core architectures to reduce turn-around times in evolutionary and biomolecular design studies. Our package is a first step to achieve the above mentioned annotation of coevolution by reduced dynamics around the native state of proteins.</p> <p>Conclusions</p> <p><monospace>BioPhysConnectoR</monospace> is implemented as an <monospace>R</monospace> package and distributed under GPL 2 license. It allows for efficient and perfectly parallelized functional annotation of coevolution found at the sequence level.</p

    HIPPIE: Integrating Protein Interaction Networks with Experiment Based Quality Scores

    Get PDF
    Protein function is often modulated by protein-protein interactions (PPIs) and therefore defining the partners of a protein helps to understand its activity. PPIs can be detected through different experimental approaches and are collected in several expert curated databases. These databases are used by researchers interested in examining detailed information on particular proteins. In many analyses the reliability of the characterization of the interactions becomes important and it might be necessary to select sets of PPIs of different confidence levels. To this goal, we generated HIPPIE (Human Integrated Protein-Protein Interaction rEference), a human PPI dataset with a normalized scoring scheme that integrates multiple experimental PPI datasets. HIPPIE's scoring scheme has been optimized by human experts and a computer algorithm to reflect the amount and quality of evidence for a given PPI and we show that these scores correlate to the quality of the experimental characterization. The HIPPIE web tool (available at http://cbdm.mdc-berlin.de/tools/hippie) allows researchers to do network analyses focused on likely true PPI sets by generating subnetworks around proteins of interest at a specified confidence level

    Improving protein function prediction methods with integrated literature data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity.</p> <p>Results</p> <p>We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder, but co-occurrence data still proves beneficial.</p> <p>Conclusion</p> <p>Co-occurrence data is a valuable supplemental source for graph-theoretic function prediction algorithms. A rapidly growing literature corpus ensures that co-occurrence data is a readily-available resource for nearly every studied organism, particularly those with small protein interaction databases. Though arguably biased toward known genes, co-occurrence data provides critical additional links to well-studied regions in the interaction network that graph-theoretic function prediction algorithms can exploit.</p

    HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic factors leading to hypertension have been extensively studied, and large numbers of research papers have been published on the subject. One of hypertension researchers' primary research tasks is to locate key hypertension-related genes in abstracts. However, gathering such information with existing tools is not easy: (1) Searching for articles often returns far too many hits to browse through. (2) The search results do not highlight the hypertension-related genes discovered in the abstract. (3) Even though some text mining services mark up gene names in the abstract, the key genes investigated in a paper are still not distinguished from other genes. To facilitate the information gathering process for hypertension researchers, one solution would be to extract the key hypertension-related genes in each abstract. Three major tasks are involved in the construction of this system: (1) gene and hypertension named entity recognition, (2) section categorization, and (3) gene-hypertension relation extraction.</p> <p>Results</p> <p>We first compare the retrieval performance achieved by individually adding template features and position features to the baseline system. Then, the combination of both is examined. We found that using position features can almost double the original AUC score (0.8140vs.0.4936) of the baseline system. However, adding template features only results in marginal improvement (0.0197). Including both improves AUC to 0.8184, indicating that these two sets of features are complementary, and do not have overlapping effects. We then examine the performance in a different domain--diabetes, and the result shows a satisfactory AUC of 0.83.</p> <p>Conclusion</p> <p>Our approach successfully exploits template features to recognize true hypertension-related gene mentions and position features to distinguish key genes from other related genes. Templates are automatically generated and checked by biologists to minimize labor costs. Our approach integrates the advantages of machine learning models and pattern matching. To the best of our knowledge, this the first systematic study of extracting hypertension-related genes and the first attempt to create a hypertension-gene relation corpus based on the GAD database. Furthermore, our paper proposes and tests novel features for extracting key hypertension genes, such as relative position, section, and template features, which could also be applied to key-gene extraction for other diseases.</p
    corecore