186 research outputs found

    ADAM17-Mediated Processing of TNF-Ξ± Expressed by Antiviral Effector CD8+ T Cells Is Required for Severe T-Cell-Mediated Lung Injury

    Get PDF
    Influenza infection in humans evokes a potent CD8+ T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8+ T-cell expression of TNF-a is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-a is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-a processing in CD8+ T-cell-mediated injury. In this study we observed that inhibition of ADAM17-mediated processing of TNF-a by CD8+ T cells significantly attenuated the diffuse alveolar damage that occurs after T-cell transfer, resulting in enhanced survival. This was due in part to diminished chemokine expression, as TNF-aprocessing was required for lung epithelial cell expression of CXCL2 and the subsequent inflammatory infiltration. We confirmed the importance of CXCL2 expression in acute lung injury by transferring influenza-specific CD8+ T cells into transgenic mice lacking CXCR2. These mice exhibited reduced airway infiltration, attenuated lung injury, and enhanced survival. Theses studies describe a critical role for TNF-a processing by CD8+ T cells in the initiation and severity of acute lung injury, which may have important implications for limiting immunopathology during influenza infection and other human infectious or inflammatory diseases

    Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Get PDF
    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia

    STAT2 Mediates Innate Immunity to Dengue Virus in the Absence of STAT1 via the Type I Interferon Receptor

    Get PDF
    Dengue virus (DENV) is a mosquito-borne flavivirus, and symptoms of infection range from asymptomatic to the severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). High viral loads correlate with disease severity, and both type I & II interferons (IFNs) are crucial for controlling viral replication. We have previously reported that signal transducer and activator of transcription (STAT) 1-deficient mice are resistant to DENV-induced disease, but little is known about this STAT1-independent mechanism of protection. To determine the molecular basis of the STAT1-independent pathway, mice lacking STAT1, STAT2, or both STAT1 and STAT2 were infected with a virulent mouse-adapted strain of DENV2. In the first 72 hours of infection, the single-deficient mice lacking STAT1 or STAT2 possessed 50–100 fold higher levels of viral RNA than wild type mice in the serum, spleen, and other visceral tissues, but remained resistant to DENV-induced death. In contrast, the double-deficient mice exhibited the early death phenotype previously observed in type I and II IFN receptor knockout mice (AG129), indicating that STAT2 is the mediator of the STAT1-independent host defense mechanism. Further studies demonstrated that this STAT2-dependent STAT1-independent mechanism requires the type I IFN receptor, and contributes to the autocrine amplification of type I IFN expression. Examination of gene expression in the spleen and bone marrow-derived macrophages following DENV infection revealed STAT2-dependent pathways can induce the transcription of a subset of interferon stimulated genes even in the absence of STAT1. Collectively, these results help elucidate the nature of the poorly understood STAT1-independent host defense mechanism against viruses by identifying a functional type I IFN/STAT2 signaling pathway following DENV infection in vivo

    Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    Get PDF
    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1βˆ’/βˆ’ and IFNαßγRβˆ’/βˆ’ mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1βˆ’/βˆ’ mice and in IFNαßγRβˆ’/βˆ’ mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1βˆ’/βˆ’ (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγRβˆ’/βˆ’ mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1βˆ’/βˆ’ and IFNαßγRβˆ’/βˆ’ mice, we infected an additional Stat1βˆ’/βˆ’ strain deleted in the DNA-binding domain (129Stat1βˆ’/βˆ’ (DBD)). These 129Stat1βˆ’/βˆ’ (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγRβˆ’/βˆ’ mice. This lethal pattern was also observed when 129Stat1βˆ’/βˆ’ (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1βˆ’/βˆ’ (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1βˆ’/βˆ’ mouse strains. The data are consistent with the hypothesis that Stat1βˆ’/βˆ’ (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons between knockout mouse strains in viral pathogenesis, and may also be relevant to the causation of HSV hepatitis in humans, a rare but frequently fatal infection

    Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection

    Get PDF
    Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naΓ―ve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection

    Phenotypic alterations in type II alveolar epithelial cells in CD4+ T cell mediated lung inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the contribution of alveolar type II epithelial cell (AEC II) activities in various aspects of respiratory immune regulation has become increasingly appreciated, our understanding of the contribution of AEC II transcriptosome in immunopathologic lung injury remains poorly understood. We have previously established a mouse model for chronic T cell-mediated pulmonary inflammation in which influenza hemagglutinin (HA) is expressed as a transgene in AEC II, in mice expressing a transgenic T cell receptor specific for a class II-restricted epitope of HA. Pulmonary inflammation in these mice occurs as a result of CD4<sup>+ </sup>T cell recognition of alveolar antigen. This model was utilized to assess the profile of inflammatory mediators expressed by alveolar epithelial target cells triggered by antigen-specific recognition in CD4<sup>+ </sup>T cell-mediated lung inflammation.</p> <p>Methods</p> <p>We established a method that allows the flow cytometric negative selection and isolation of primary AEC II of high viability and purity. Genome wide transcriptional profiling was performed on mRNA isolated from AEC II isolated from healthy mice and from mice with acute and chronic CD4<sup>+ </sup>T cell-mediated pulmonary inflammation.</p> <p>Results</p> <p>T cell-mediated inflammation was associated with expression of a broad array of cytokine and chemokine genes by AEC II cell, indicating a potential contribution of epithelial-derived chemoattractants to the inflammatory cell parenchymal infiltration. Morphologically, there was an increase in the size of activated epithelial cells, and on the molecular level, comparative transcriptome analyses of AEC II from inflamed versus normal lungs provide a detailed characterization of the specific inflammatory genes expressed in AEC II induced in the context of CD4<sup>+ </sup>T cell-mediated pneumonitis.</p> <p>Conclusion</p> <p>An important contribution of AEC II gene expression to the orchestration and regulation of interstitial pneumonitis is suggested by the panoply of inflammatory genes expressed by this cell population, and this may provide insight into the molecular pathogenesis of pulmonary inflammatory states. CD4<sup>+ </sup>T cell recognition of antigen presented by AEC II cells appears to be a potent trigger for activation of the alveolar cell inflammatory transcriptosome.</p

    A Novel Requirement for Janus Kinases as Mediators of Drug Resistance Induced by Fibroblast Growth Factor-2 in Human Cancer Cells

    Get PDF
    The development of resistance to chemotherapy is a major cause of cancer-related death. Elucidating the mechanisms of drug resistance should thus lead to novel therapeutic strategies. Fibroblast growth factor (FGF)-2 signaling induces the assembly of a multi-protein complex that provides tumor cells with the molecular machinery necessary for drug resistance. This complex, which involves protein kinase C (PKC) Ξ΅, v-raf murine sarcoma viral oncogene homolog B1 (B-RAF) and p70 S6 kinase Ξ² (S6K2), enhances the selective translation of anti-apoptotic proteins such as B-cell leukaemia/lymphoma-2 (BCL-2) and inhibitors of apoptosis protein (IAP) family members and these are able to protect multiple cancer cell types from chemotherapy-induced cell death. The Janus kinases (JAKs) are most noted for their critical roles in mediating cytokine signaling and immune responses. Here, we show that JAKs have novel functions that support their consideration as new targets in therapies aimed at reducing drug resistance. As an example, we show that the Janus kinase TYK2 is phosphorylated downstream of FGF-2 signaling and required for the full phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Moreover, TYK2 is necessary for the induction of key anti-apoptotic proteins, such as BCL-2 and myeloid cell leukemia sequence (MCL) 1, and for the promotion of cell survival upon FGF-2. Silencing JAK1, JAK2 or TYK2 using RNA interference (RNAi) inhibits FGF2-mediated proliferation and results in the sensitization of tumor cells to chemotherapy-induced killing. These effects are independent of activation of signal transducer and activator of transcription (STAT) 1, STAT3 and STAT5A/B, the normal targets of JAK signaling. Instead, TYK2 associates with the other kinases previously implicated in FGF-2-mediated drug resistance. In light of these findings we hypothesize that TYK2 and other JAKs are important modulators of FGF-2-driven cell survival and that inhibitors of these kinases will likely improve the effectiveness of other cancer therapies

    STAT1 Hyperphosphorylation and Defective IL12R/IL23R Signaling Underlie Defective Immunity in Autosomal Dominant Chronic Mucocutaneous Candidiasis

    Get PDF
    We recently reported the genetic cause of autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) as a mutation in the STAT1 gene. In the present study we show that STAT1 Arg274Trp mutations in the coiled-coil (CC) domain is the genetic cause of AD-CMC in three families of patients. Cloning and transfection experiments demonstrate that mutated STAT1 inhibits IL12R/IL-23R signaling, with hyperphosphorylation of STAT1 as the likely underlying molecular mechanism. Inhibition of signaling through the receptors for IL-12 and IL-23 leads to strongly diminished Th1/Th17 responses and hence to increased susceptibility to fungal infections. The challenge for the future is to translate this knowledge into novel strategies for the treatment of this severe immunodeficiency

    Effects of gemcitabine on APE/ref-1 endonuclease activity in pancreatic cancer cells, and the therapeutic potential of antisense oligonucleotides

    Get PDF
    Apurinic/apyrimidinic endonuclease (APE) is a key enzyme involved in DNA base excision repair (BER) that is often expressed at elevated levels in human cancers. Pancreatic cancer cells treated with the nucleoside analogue gemcitabine (2β€², 2β€²-difluoro-2β€²deoxycytidine) showed increases in APE/redox effector factor (ref-1) protein levels (approximately two-fold for Panc-1 and six-fold for MiaPaCa-2), with corresponding increases in endonuclease activity. These results suggested that the activation of APE/ref-1 might be an adaptive response that contributes to gemcitabine resistance by facilitating BER. To test this hypothesis, we examined the effects of disrupting APE/ref-1 using antisense on gemcitabine toxicity. Antisense oligonucleotides decreased protein levels three-fold in MiaPaCa-2 and five-fold in Panc-1 in comparison to controls, associated with reduced endonuclease activity. Combination treatments with antisense oligonucleotides and gemcitabine partially suppressed the increase in APE/ref-1 activity seen in cells exposed to gemcitabine alone. While clonogenic assays showed only slight decreases in colony formation in cells treated with either antisense oligonucleotides or gemcitabine alone, the combination with APE/ref-1 antisense resulted in a 2-log enhancement of gemcitabine toxicity in Panc-1 cells. Overall these findings suggest that APE/ref-1 plays a significant role in gemcitabine resistance in some pancreatic cancer cells, and support the further investigation of novel treatments that target this protein

    Interferon-Ξ³ Activates Nuclear Factor-ΞΊ B in Oligodendrocytes through a Process Mediated by the Unfolded Protein Response

    Get PDF
    Our previous studies have demonstrated that the effects of the immune cytokine interferon-Ξ³ (IFN-Ξ³) in immune-mediated demyelinating diseases are mediated, at least in part, by the unfolded protein response (UPR) in oligodendrocytes. Data indicate that some biological effects of IFN-Ξ³ are elicited through activation of the transcription factor nuclear factor-ΞΊB (NF-ΞΊB). Interestingly, it has been shown that activation of the pancreatic endoplasmic reticulum kinase (PERK) branch of the UPR triggers NF-ΞΊB activation. In this study, we showed that IFN-Ξ³-induced NF-ΞΊB activation was associated with activation of PERK signaling in the oligodendroglial cell line Oli-neu. We further demonstrated that blockage of PERK signaling diminished IFN-Ξ³-induced NF-ΞΊB activation in Oli-neu cells. Importantly, we showed that NF-ΞΊB activation in oligodendrocytes correlated with activation of PERK signaling in transgenic mice that ectopically express IFN-Ξ³ in the central nervous system (CNS), and that enhancing IFN-Ξ³-induced activation of PERK signaling further increased NF-ΞΊB activation in oligodendrocytes. Additionally, we showed that suppression of the NF-ΞΊB pathway rendered Oli-neu cells susceptible to the cytotoxicity of IFN-Ξ³, reactive oxygen species, and reactive nitrogen species. Our results indicate that the UPR is involved in IFN-Ξ³-induced NF-ΞΊB activation in oligodendrocytes and suggest that NF-ΞΊB activation by IFN-Ξ³ represents one mechanism by which IFN-Ξ³ exerts its effects on oligodendrocytes in immune-mediated demyelinating diseases
    • …
    corecore