1,797 research outputs found

    The Role of Consciousness in Memory

    Get PDF
    Conscious events interact with memory systems in learning, rehearsal and retrieval (Ebbinghaus 1885/1964; Tulving 1985). Here we present hypotheses that arise from the IDA computional model (Franklin, Kelemen and McCauley 1998; Franklin 2001b) of global workspace theory (Baars 1988, 2002). Our primary tool for this exploration is a flexible cognitive cycle employed by the IDA computational model and hypothesized to be a basic element of human cognitive processing. Since cognitive cycles are hypothesized to occur five to ten times a second and include interaction between conscious contents and several of the memory systems, they provide the means for an exceptionally fine-grained analysis of various cognitive tasks. We apply this tool to the small effect size of subliminal learning compared to supraliminal learning, to process dissociation, to implicit learning, to recognition vs. recall, and to the availability heuristic in recall. The IDA model elucidates the role of consciousness in the updating of perceptual memory, transient episodic memory, and procedural memory. In most cases, memory is hypothesized to interact with conscious events for its normal functioning. The methodology of the paper is unusual in that the hypotheses and explanations presented are derived from an empirically based, but broad and qualitative computational model of human cognition

    Poverty and supply of wage goods in Tamil Nadu

    Get PDF

    Interaction of mixed mode loading on cyclic debonding in adhesively bonded composite joints

    Get PDF
    A combined experimental and analytical investigation of an adhesively-bonded composite joint was conducted to characterize the fracture mode dependence of cyclic debonding. The system studied consisted of graphite/epoxy adherends bonded with EC 3445 adhesive. Several types of specimens are tested which provide the cyclic debond growth rate measurements under various load conditions: mode 1, mixed mode 1 to 2, and mostly mode 2. This study shows that the total strain-energy-release rate is the governing factor for cyclic debonding

    A new generation of cyberinfrastructure and data services for earth system science education and research

    No full text
    International audienceA revolution is underway in the role played by cyberinfrastructure and modern data services in the conduct of research and education. We live in an era of an unprecedented data volume from diverse sources, multidisciplinary analysis and synthesis, and active, learner-centered education emphasis. Complex environmental problems such as global change and water cycle transcend disciplinary and geographic boundaries, and their solution requires integrated earth system science approaches. Contemporary education strategies recommend adopting an Earth system science approach for teaching the geosciences, employing pedagogical techniques such as enquiry-based learning. The resulting transformation in geoscience education and research creates new opportunities for advancement and poses many challenges. The success of the scientific enterprise depends heavily on the availability of a state-of-the-art, robust, and flexible cyberinfrastructure, and on the timely access to quality data, products, and tools to process, manage, analyze, integrate, publish, and visualize those data. Concomittantly, rapid advances in computing, communication, and information technologies have revolutionized the provision and use of data, tools and services. The profound consequences of Moore's Law and the explosive growth of the Internet are well known. On the other hand, how other technological trends have shaped the development of data services is less well understood. For example, the advent of digital libraries, web services, open standards and protocols have been important factors in shaping a new generation of cyberinfrastructure for solving key scientific and educational problems. This paper presents a broad overview of these issues, along with a survey of key information technology trends, and discuses how those trends are enabling new approaches to applying data services for solving geoscientific problems

    Structural and Electrical Studies of NixSn1-xO2 Sn Dopped Nickel Oxide Thin Film by Jet Nebulizer Spray Pyrolysis Technique for Photodiode and Solar Cell Applications

    Get PDF
    The dissertation deals with preparation and characterization of NixSn1-xO2 thin films by the jet nebulizer spray pyrolysis technique at optimized temperature 450°C with Ni dopants. The films were analysed to understand the structural, surface morphology, optical and electrical studies for NixSn1-xO2 thin. Moreover, in the case of transparent oxide films, the thickness increases linearly with time of spray. Also, the growth of thin films is temperature dependent. At low temperatures, the growth rate is controlled by activated processes, such as adsorption, surface diffusion chemical reaction and desorption. However, at high temperatures, the activated processes occur so fast and the molecules do not dam up on the substrate. Growth rate also depends on the size of the droplets, because the decomposition of droplet is temperature dependent. If the droplet size is large, the heat absorbed from the surroundings will not be sufficient to vaporize entirely the solvent on the way to the substrate and adversely affect the kinetics of the reaction. The XRD Pattern of NixSn1-xO2 shows the polycrystalline nature with orthorhombic structure and is oriented through (021) direction. The grain size of the prepared films is increased up to x=0.2 and then decreased slightly, for x= 0.8 the grain increases.  The conductivity of NixSn1-xO2(x=0) at room temperature is 2.8Ă—10-4s/cm and the other compositions (x=0.2, 0.4, 0.8) show the decrease of conductivity to 2.4Ă—10-6s/cm. The maximum transmittance ( 75%) shows in IR region and 70%of transmittance in the visible region at x=0.4. The band gap value of NixSn1-xO2 films is 2.96, 2.98 and 3.0 ev for x=0.8 0.2 and 0.4 respectively. It can be used for diode and solar cell applications due to the higher transmittance and decreases of band gap energy

    Performance of Some Tunnels in Squeezing Rocks of Himalayas

    Get PDF
    Data regarding the performance of three tunnelling projects in the Himalayan region has been collected. It is seen that rock loads or deformations calculated on the basis of Barton, Bieniawski or RMR approach do not match the field data. A mathematical model has been developed incorporating modifications in the approach of Brown et.al of rock-support interaction, using elastic-strain softening-plastic ground characteristics. A non-linear relationship between radial and tangential strains around the tunnel has been considered and the method of calculation of stresses and deformations altered to incorporate exact integration of the governing differential equation for a thin cylindrical annulus replacing finite difference approximation. It is seen that a closer match and a more rational explanation of the observed data from the tunnelling project is provided by the mathematical model

    Radio Link Simulator

    Get PDF
    The need for transmission of data over HF and VJUHF radio is increasing. There is a major disadvantage in testing the link in a field trial as propagation condition of the medium (especially HF) can be unpredictable and link condition may never again be the same. A simulator to create the atmospheric conditions, repeatably as required,to test the system behaviour is evident. The various propagation effects can be mathematically modelled, to get the signal affected by thechannel. Models for Gaussian, Rayleigh and Rice distributions and the implementation of the simulator using latest state-of-the-art DSP techniques are discussed
    • …
    corecore