31 research outputs found

    Eine Test- und Ansteuerschaltung für eine neuartige 3D Verbindungstechnologie

    Get PDF
    In der vorliegenden Arbeit wird eine Built-In Self-Test Schaltung (BIST) vorgestellt, welche die vertikalen Inter-Chip-Verbindungen in einer neuartigen 3D Schaltungstechnologie auf ihre Funktionalität zur Datenübertragung überprüft. Die 3D Technologie beruht auf der Stapelung mehrerer aktiver Silizium-CMOS-ICs, welche durch das Siliziumsubstrat hindurch vertikal miteinander elektrisch verbunden sind. Bei diesen Vias sind die zu erwartenden Defekte hochohmige Verbindungen und Kurzschlüsse. </p><p style=&quot;line-height: 20px;&quot;> Die entwickelte Testschaltung ermöglicht es, beliebige Konstellationen von vertikalen Verbindungen auf Fehler zu untersuchen, und das Ergebnis entweder zur Analyse der 3D Technologie auszulesen oder innerhalb des Chipstapels zu verwenden, um defekte Vias zu umgehen. Die Schaltung wurde in einer 0,13μm Technologie entworfen und simuliert. Ein Testchip ist momentan in Produktion

    Yield-improving test and routing circuits for a novel 3-D interconnect technology

    Get PDF
    This work presents a system to increase the yield of a novel 3-D chip integration technology. A built-in self-test and a routing system have been developed to identify and avoid faults on vertical connections between different stacked chips. The 3-D technology is based on stacking several active CMOS-ICs, which have through-substrate electrical contacts to communicate with each other. The expected defects of these vias are shorts and resistances that are too high. <P> The test and routing system is designed to analyze an arbitrary number of connections. The result ist used to gain information about the reliability of the new 3-D processing and to increase its yield. The circuits have been developed in 0.13 μm technology, one chip has been fabricated and tested, another one is in production

    Modular Localization of Massive Particles with "Any" Spin in d=2+1

    Get PDF
    We discuss a concept of particle localization which is motivated from quantum field theory, and has been proposed by Brunetti, Guido and Longo and by Schroer. It endows the single particle Hilbert space with a family of real subspaces indexed by the space-time regions, with certain specific properties reflecting the principles of locality and covariance. We show by construction that such a localization structure exists also in the case of massive anyons in d=2+1, i.e. for particles with positive mass and with arbitrary spin s in the reals. The construction is completely intrinsic to the corresponding ray representation of the (proper orthochronous) Poincare group. Our result is of particular interest since there are no free fields for anyons, which would fix a localization structure in a straightforward way. We present explicit formulas for the real subspaces, expected to turn out useful for the construction of a quantum field theory for anyons. In accord with well-known results, only localization in string-like, instead of point-like or bounded, regions is achieved. We also prove a single-particle PCT theorem, exhibiting a PCT operator which acts geometrically correctly on the family of real subspaces

    The complex X-ray spectrum of NGC 4507

    Full text link
    XMM-Newton and Chandra/HETG spectra of the Compton-thin (NH 4x10^{23} cm^{-2}) Seyfert 2 galaxy, NGC 4507, are analyzed and discussed. The main results are: a) the soft X-ray emission is rich in emission lines; an (at least) two--zone photoionization region is required to explain the large range of ionization states. b) The 6.4 keV iron line is likely emitted from Compton-thick matter, implying the presence of two circumnuclear cold regions, one Compton-thick (the emitter), one Compton-thin (the cold absorber). c) Evidence of an Fe xxv absorption line is found in the Chandra/HETG spectrum. The column density of the ionized absorber is estimated to be a few x10^{22} cm^{-2}.Comment: accepted for publication in A&

    Study on cosmogenic activation above ground for the DarkSide-20k project

    Get PDF
    The activation of materials due to the exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k is a direct detection experiment for galactic dark matter particles, using a two-phase liquid argon time projection chamber filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the argon and other massive components of the set-up has been estimated; production of 120 t of radiopure UAr is foreseen. The expected exposure above ground and production rates, either measured or calculated, have been considered. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. Activation of titanium, considered in early designs but not used in the final design, is discussed. The activity of 39Ar induced during extraction, purification and transport on surface, in baseline conditions, is evaluated to be 2.8% of the activity measured in UAr from the same source, and thus considered acceptable. Other products in the UAr such as 37Ar and 3H are shown to not be relevant due to short half-life and assumed purification methods

    The Eulerian urban dispersion model EPISODE – Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg

    No full text
    This paper describes the CityChem extension of the Eulerian urban dispersion model EPISODE. The development of the CityChem extension was driven by the need to apply the model in largely populated urban areas with highly complex pollution sources of particulate matter and various gaseous pollutants. The CityChem extension offers a more advanced treatment of the photochemistry in urban areas and entails specific developments within the sub-grid components for a more accurate representation of dispersion in proximity to urban emission sources. Photochemistry on the Eulerian grid is computed using a numerical chemistry solver. Photochemistry in the sub-grid components is solved with a compact reaction scheme, replacing the photo-stationary-state assumption. The simplified street canyon model (SSCM) is used in the line source sub-grid model to calculate pollutant dispersion in street canyons. The WMPP (WORM Meteorological Pre-Processor) is used in the point source sub-grid model to calculate the wind speed at plume height. The EPISODE–CityChem model integrates the CityChem extension in EPISODE, with the capability of simulating the photochemistry and dispersion of multiple reactive pollutants within urban areas. The main focus of the model is the simulation of the complex atmospheric chemistry involved in the photochemical production of ozone in urban areas. The ability of EPISODE–CityChem to reproduce the temporal variation of major regulated pollutants at air quality monitoring stations in Hamburg, Germany, was compared to that of the standard EPISODE model and the TAPM (The Air Pollution Model) air quality model using identical meteorological fields and emissions. EPISODE–CityChem performs better than EPISODE and TAPM for the prediction of hourly NO2 concentrations at the traffic stations, which is attributable to the street canyon model. Observed levels of annual mean ozone at the five urban background stations in Hamburg are captured by the model within ±15 %. A performance analysis with the FAIRMODE DELTA tool for air quality in Hamburg showed that EPISODE–CityChem fulfils the model performance objectives for NO2 (hourly), O3 (daily max. of the 8 h running mean) and PM10 (daily mean) set forth in the Air Quality Directive, qualifying the model for use in policy applications. Envisaged applications of the EPISODE–CityChem model are urban air quality studies, emission control scenarios in relation to traffic restrictions and the source attribution of sector-specific emissions to observed levels of air pollutants at urban monitoring stations

    The indirect determination of chlorine atom concentration in the troposphere from changes in the patterns of nonmethane hydrocarbons

    No full text
    About 200 measurements of C2–C9 hydrocarbons were made during a ship cruise (NATAC 91) in the western Mediterranean Sea, the eastern Mid- and North Atlantic and the North Sea in April and May 1991. The changes in the ratios of several pairs of hydrocarbons are used to investigate the possible impact of Cl-atom reactions on the atmospheric removal processes of hydrocarbons. In order to minimize the potential bias from atmospheric mixing processes, a careful selection of suitable hydrocarbon sets is essential. The NMHC mixing ratios observed during NATAC 91 are generally well above those typical for air in the remote marine background and the observed changes in the hydrocarbon patterns agree very well with those predicted from OH-radical chemistry. No significant evidence for an impact of chlorine atoms could be found in this data set. The best estimate for the average [Cl]/[OH] ratio is in the range of 10−3. However, within the various uncertainties associated with such estimates, this value is not significantly different from zero. The upper limit is in the range of 2–7·10−3. Based on an average OH-radical concentration of 106 cm−3, this corresponds to some 103 Cl-atoms cm−3. This is far below the Cl-atom concentrations found during the tropospheric ozone depletion events in arctic spring. Our values are also far below those derived in some other studies for the marine boundary layer but are still compatible with recent model calculations. Our findings support the conclusion of Rudolph and coworkers that on average, Cl-atoms are of limited importance for the chemistry of the troposphere. It is important that the major part of the uncertainty of the Cl-atom concentration estimates results from errors in the rate constants for the reactions of the hydrocarbons with OH-radicals. A reliable and consistent set of the relevant rate constants would further improve the accuracy of the Cl-atom concentration estimates or their upper limits derived from changes in the hydrocarbon patterns

    The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions

    No full text
    This paper describes the Eulerian urban dispersion model EPISODE. EPISODE was developed to address a need for an urban air quality model in support of policy, planning, and air quality management in the Nordic, specifically Norwegian, setting. It can be used for the calculation of a variety of airborne pollutant concentrations, but we focus here on the implementation and application of the model for NO2 pollution. EPISODE consists of an Eulerian 3D grid model with embedded sub-grid dispersion models (e.g. a Gaussian plume model) for dispersion of pollution from line (i.e. roads) and point sources (e.g. chimney stacks). It considers the atmospheric processes advection, diffusion, and an NO2 photochemistry represented using the photostationary steady-state approximation for NO2. EPISODE calculates hourly air concentrations representative of the grids and at receptor points. The latter allow EPISODE to estimate concentrations representative of the levels experienced by the population and to estimate their exposure. This methodological framework makes it suitable for simulating NO2 concentrations at fine-scale resolution (<100 m) in Nordic environments. The model can be run in an offline nested mode using output concentrations from a global or regional chemical transport model and forced by meteorology from an external numerical weather prediction model; it also can be driven by meteorological observations. We give a full description of the overall model function and its individual components. We then present a case study for six Norwegian cities whereby we simulate NO2 pollution for the entire year of 2015. The model is evaluated against in situ observations for the entire year and for specific episodes of enhanced pollution during winter. We evaluate the model performance using the FAIRMODE DELTA Tool that utilises traditional statistical metrics, e.g. root mean square error (RMSE), Pearson correlation R, and bias, along with some specialised tests for air quality model evaluation. We find that EPISODE attains the DELTA Tool model quality objective in all of the stations we evaluate against. Further, the other statistical evaluations show adequate model performance but that the model scores greatly improved correlations during winter and autumn compared to the summer. We attribute this to the use of the photostationary steady-state scheme for NO2, which should perform best in the absence of local ozone photochemical production. Oslo does not comply with the NO2 annual limit set in the 2008/50/EC directive (AQD). NO2 pollution episodes with the highest NO2 concentrations, which lead to the occurrence of exceedances of the AQD hourly limit for NO2, occur primarily in the winter and autumn in Oslo, so this strongly supports the use of EPISODE for application to these wintertime events. Overall, we conclude that the model is suitable for an assessment of annual mean NO2 concentrations and also for the study of hourly NO2 concentrations in the Nordic winter and autumn environment. Further, in this work we conclude that it is suitable for a range of policy applications specific to NO2 that include pollution episode analysis, evaluation of seasonal statistics, policy and planning support, and air quality management. Lastly, we identify a series of model developments specifically designed to address the limitations of the current model assumptions. Part 2 of this two-part paper discusses the CityChem extension to EPISODE, which includes a number of implementations such as a more comprehensive photochemical scheme suitable for describing more chemical species and a more diverse range of photochemical environments, as well as a more advanced treatment of the sub-grid dispersion
    corecore