10 research outputs found

    El Escorial calcitic marbles (Cushamen Metamorphic Complex, Macizo Norpatagónico): 87Sr/86Sr isotopic characterization and age of sedimentation

    Get PDF
    Los mármoles de El Escorial (Complejo Metamórfico Cushamen) se encuentran asociados a anfibolitas que forman septos metamórficos dentro de los granitoides pérmicos de la Formación Mamil Choique (261-286 Ma). El metamorfismo de los septos, determinado en gneises migmáticos en facies de granulita aflorantes 120 km al suroeste de El Escorial, ocurre a los 311±27 Ma (método CHIME en monacita). Los mármoles son de composición calcítica (calcita >95%, R.I.: 0,5 a 2,5%) y presentan razones de 87Sr/86Sr entre 0,70768 y 0,70825 (n=10). Los datos aportados en este trabajo, sumado a contribuciones previas, permiten acotar la edad de sedimentación de las sucesiones silícico-carbonáticas del Complejo Metamórfico Cushamen entre los ca. 385 y 335 Ma. Esto sugiere la existencia de una plataforma mixta (carbonática-siliciclástica) al menos en la porción más austral del suroeste de Gondwana entre el Devónico Medio y el Carbonífero inferior (Misisipiano Medio).The El Escorial marbles (Cushamen Metamorphic Complex) along with amphibolites form metamorphic septa within the permian granitoids of the Mamil Choique Formation (261-286 Ma). The metamorphism, determined in granulite facies migmatic gneisses septa cropping out 120 km southwest of El Escorial, occurs at 311±27 Ma (CHIME method in monazite). The marbles are calcitic (calcite >95%, R.I.: 0.5 to 2.5%) and show87 Sr/86 Sr ratios between 0.70768 and 0.70825 (n=10). The data provided in this work, added to previous contributions, allow to constraints the sedimentation age of the silicic-carbonate successions of the Cushamen Metamorphic Complex between ca. 385 and 335 Ma. This suggests the existence of a mixed carbonate-siliciclastic platform at least in the southernmost portion of southwestern Gondwana between Middle Devonian and early Carboniferous (Middle Mississippian).Fil: Murra, Juan Alberto Félix. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Verdecchia, Sebastián Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Galindo, Carmen. Universidad Complutense de Madrid; Españ

    Viaje al interior de la tierra: Conociendo los secretos de las Sierras de Córdoba

    No full text
    Las rocas de las Sierras de Córdoba esconden un magnífico registro geológico que precede a la existencia de los dinosaurios en la Tierra. Aunque no parezca, las rocas pueden “hablar” y somos los geólogos los encargados de “escuchar” la apasionante historia que tienen para contarnos. Esta historia abarca cientos de millones de años y comprende eventos de formación de montañas similares a los Andes, fusión de rocas y generación de magmas, erupciones volcánicas y terremotos. Explorar de forma directa las capas más profundas de la Tierra para estudiarlas no es una tarea sencilla. Hasta ahora no hemos sido capaces de avanzar más allá de los 12 kilómetros de profundidad, distancia alcanzada por una perforación en la península de Kola (Rusia). Sin embargo, esto representa apenas el 0,2% de la distancia al centro de la Tierra, que alcanza aproximadamente los 6.370 kilómetros, distancia equivalente a un viaje desde Córdoba a Ushuaia ida y vuelta. Nuestro viaje imaginario nos llevará al doble de la profundidad alcanzada por la perforación rusa, para lo cual necesitaremos una nave capaz de atravesar kilómetros de rocas tal como ocurre en la película The Core (El Núcleo). En ella sus protagonistas deben adentrarse en las entrañas del planeta para reactivar la rotación del núcleo terrestre y así evitar la extinción de toda forma de vida. Solo que, además, nuestra nave deberá tener la tecnología del DeLorean DMC-12 de la película Back to the future (Volver al Futuro) ya que este viaje al interior terrestre no lo realizaremos hoy, sino que deberemos transportarnos cientos de millones de años al pasado.Fil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Morales Camera, Matías Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin

    The Difunta Correa Metasedimentary Sequence (NW Argentina): relict of a Neoproterozoic platform? elemental and Sr-Nd isotope evidence

    Get PDF
    The Sierra de Pie de Palo (Western Sierras Pampeanas, Argentina)in the Andean foreland is mainly formed by a Mesoproterozoic basementand an Ediacaran metasedimentary cover referred to as theDifunta Correa metasedimentary sequence. The latter is key to understandingthe characteristics of this region prior to the early Cambrianassembly of SW Gondwana. It is composed of low- to medium grademetamorphic rocks (metasandstones, mica-schists, Ca-pelitic schists,metaconglomerates, marbles and less abundant amphibolites) that canbe grouped into four informal lithostratigraphic units. The chemicalcomposition of these rocks allows to classify the siliciclastic protolithsas shales, Fe-shales and immature sandstones (wackes, sub-litharenites,litharenites and Fe-sandstones). The sediments were derived from anevolved felsic to intermediate continental source and were depositedon a continental passive margin overlaying a Mesoproterozoic basementthat crops out at several places of the Western Sierras Pampeanas.Thick marine carbonate beds with seawater isotope composition,phosphatic clasts and the lack of contemporaneous, arc related igneousrocks, also support a passive margin sedimentation. Phosphaticclasts within metaconglomerates are described for the first time inthe Sierras Pampeanas and were probably formed after an importantNeoproterozoic glaciation (Marinoan). We further suggest, based onour data and previous works, that the passive margin probably belongedto the Paleoproterozoic MARA (acronym of Maz, Arequipa, Río Apa)continental block. MARA, which remained juxtaposed to Laurentiasince the middle to late Mesoproterozoic orogenies until its eventualdrifting in the late Neoproterozoic, finally accreted to SW Gondwanain early Cambrian times during the Pampean orogeny.Fil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Casquet, César. Universidad Complutense de Madrid. Instituto de Geociencias; EspañaFil: Baldo, Edgardo Gaspar Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Galindo, Carmen. Universidad Complutense de Madrid. Instituto de Geociencias; Españ

    Late Cambrian-Early Ordovician magmatism in the Sierra de Pie de Palo, Sierras Pampeanas (Argentina): Implications for the early evolution of the proto-Andean margin of Gondwana

    No full text
    The Sierra de Pie de Palo, in the Argentinean Sierras Pampeanas (Andean foreland), consists of a Mesoproterozoic basement and an Ediacaran-upper Cambrian sedimentary cover that underwent folding, thrusting and metamorphism during the Ordovician Famatinian orogeny. Mafic rocks and granitoids of the easternmost Sierra de Pie de Palo provide information about the magmatic activity at the proto-Andean margin of Gondwana during late Cambrian-Early Ordovician time. Magmatic activity began in the Sierra de Pie de Palo as dykes, sills and small intrusions of tholeiitic gabbros between 490 and 470 Ma, before shortening and regional metamorphism. Variable mantle sources (Nd depleted mantle age, TDM between 1.7 and 1.3 Ga) were involved in the mafic magmatism. Nd-isotope signatures were probably inherited from a Mesoproterozoic subcontinental mantle. Mafic magmatism was coincident with collapse of a Cambrian carbonate-siliciclastic platform that extended along SW Gondwana, and was probably coeval with the beginning of subduction. After mafic magmatism, peraluminous granitoids were emplaced in the Sierra de Pie de Palo along ductile shear zones during a contractional tectonic phase, coeval with moderate to high P/T metamorphism, and with the Cordilleran-type magmatic arc that resulted from a flare-up at c. 470 Ma. Granitoids resulted mainly from partial melting of metasedimentary rocks, although some hybridization with juvenile magmas and/or rocks cannot be ruled out. The evidence shown here further implies that the Pie de Palo block was part of the continental upper plate during the Famatinian subduction, and not an exotic block that collided with the Gondwana margin.Fil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Casquet, César. Universidad Complutense de Madrid; EspañaFil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Galindo Francisco, Carmen. Universidad Complutense de Madrid; EspañaFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin

    The Maz Metasedimentary Series (Western Sierras Pampeanas, Argentina). A relict basin of the Columbia supercontinent?

    No full text
    The Maz Metasedimentary Series is part of the Maz Complex that crops out in the sierras of Maz and Espinal (Western Sierras Pampeanas) and in the Sierra de Umango (Andean Frontal Cordillera), northwestern Argentina. The Maz Complex is found within a thrust stack of Silurian age, which later underwent open folding. The Maz Metasedimentary Series mainly consists of medium-grade garnet-staurolite-kyanite-sillimanite schists and quartzites, with minor amounts of marble and calc-silicate rocks. Transposed metadacite dykes have been recognized along with amphibolites, metagabbros, metadiorites and orthogneisses. Schist, quartzite and metadacite samples were analysed for SHRIMP U-Pb zircon dating. The Maz Metasedimentary Series is polymetamorphic and records probably three metamorphic events during the Grenvillian orogeny, at c. 1235, 1155 and 1035 Ma, and a younger metamorphism at c. 440-420 Ma resulting from reactivation during the Famatinian orogeny. The sedimentary protoliths were deposited between 1.86 and 1.33-1.26 Ga (the age of the Andean-type Grenvillian magmatism recorded in the Maz Complex), and probably before 1.75 Ga. The main source areas correspond to Palaeoproterozoic and, to a lesser magnitude, Meso-Neoarchaean rocks. The probable depositional age and the detrital zircon age pattern suggest that the Maz Metasedimentary Series was laid down in a basin of the Columbia supercontinent, mainly accreted between 2.1 and 1.8 Ga. The sedimentary sources were diverse, and we hypothesize that deposition took place before Columbia broke up. The Rio Apa block, and the Río de la Plata, Amazonia and proto-Kalahari cratons, which have nearby locations in the palaeogeographic reconstructions, were probably the main blocks that supplied sediments to this basin.Fil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Casquet, César. Universidad Complutense de Madrid; EspañaFil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Pankhurst, Robert. British Geological Survey; Reino UnidoFil: Verdecchia, Sebastián Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Fanning, Christopher Mark. Australian National University; AustraliaFil: Murra, Juan Alberto Félix. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin

    The Faja Eruptiva of the Eastern Puna and the Sierra de Calalaste, NW Argentina: U–Pb zircon chronology of the early Famatinan orogeny

    No full text
    The Famatinian is a segment of the Ordovician Terra Australis accretionary orogen that stretched along the SW Margin of Gondwana from Australia to Colombia. The present knowledge of this orogenic segment still is incomplete. We present geochemistry and U–Pb SHRIMP zircon geochronology of igneous and metamorphic rocks from the Central Famatinian Domain, one of the several domains recognized by Rapela et al. (Earth Sci Rev 187: 259–285. https://doi.org/10.1016/j.earscirev.2018.10.006) that includes the northern Sierras Pampeanas and the southern Puna of North West Argentina. Six samples of igneous rocks (peraluminous granitoids, mafic and felsic rocks, volcanic/subvolcanic rocks) and six samples of associated meta-sedimentary rocks, all from the Puna were dated and chemically analysed. The results indicate that the Central Famatinian Domain is in turn a composite domain that includes a Cordilleran-type magmatic arc (ca. 470 Ma) and a yuxtaposed fault-bounded older terrain formed in an extensional setting at the very start of the Famatinian orogeny, between 480 and 485 Ma, i.e., shortly after the SW Gondwana margin switched from passive to active. This short period of extension with related sedimentation, volcanism and mainly granitoid plutonism has not been previously recognised. It occurred before the Cordilleran-type magmatic arc -that resulted from a magmatic flare-up between ca. 473 and 468 Ma-, set up coincident with a contractional phase. The evidence confirms that accretionary orogeny results from tectonic switching (pull–push orogeny) and that the extensional and contractional phases are of relatively short duration.El cinturón Famatiniano es un segmento del orógeno acreccionario ordovícico Terra Australis, que se extendía a lo largo del margen SW de Gondwana desde Australia hasta Colombia. El conocimiento de este cinturón es todavía muy incompleto. En este trabajo se ha realizado geoquímica y geocronología U-Pb SHRIMP en circón en rocas ígneas y metamórficas del Dominio Famatiniano Central (Rapela et al., 2016) en el norte de las Sierras Pampeanas y el sur de la Puna en el noroeste de Argentina. Se han datado y analizado químicamente seis muestras de rocas ígneas (granitoides peraluminosos y rocas volcánicas/subvolcánicas maficas y felsicas) y seis muestras de rocas metasedimentarias asociadas, de la Puna meridional, principalmente. Los resultados indican que el Dominio Famatiniano Central es un dominio compuesto, que incluye un arco magmático de tipo Cordillerano con magmatismo de tipo I (ca. 470 Ma) y un terreno más antiguo, yuxtapuestos en la actualidad mediante fallas ándicas. Este último se formó en un contexto de extensión al comienzo de la orogénesis Famatiniana, entre ca. 480 y 485 Ma., en el margen SO de Gondwana, poco después de que cambiara de pasivo a activo. Este breve período de extensión, con sedimentación relacionada, vulcanismo y, principalmente, plutonismo granitoide, no había sido reconocido previamente y tuvo lugar antes de que se instalara el arco magmático de tipo Cordillerano como resultado de un flare-up magmático entre 473 y 468 Ma, coincidente, a su vez, con una fase de contracción. Esta evidencia confirma que la orogénesis acreccionaria es el resultado de la permutación tectónica (tectonic switching) entre fases de extensión y contracción (pull-push orogeny) y que estas son de duración relativamente corta.Fil: Casquet, César. Universidad Complutense de Madrid; EspañaFil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Galindo Francisco, Carmen. Universidad Complutense de Madrid; EspañaFil: Pankhurst, Robert. British Geological Survey (bgs); Reino UnidoFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Verdecchia, Sebastián Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Larrovere, Mariano Alexis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Rapela, Carlos Washington. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Recio, Clemente. Universidad de Salamanca; Españ

    The Famatinian orogeny in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana

    No full text
    To interpret the geological and tectonic evolution of the Famatinian orogen and the magma sources in different episodes we look at evidence at the 27º?33ºS type sector in the Sierras Pampeanas, the Precordillera, and northeastern Patagonia. Previous geological, geochemical and geochronological results are reviewed together with new 177Hf/176Hf and 18O/16O data for dated zircon, U?Pb SHRIMP crystallization ages and whole-rock Sr and Nd isotope compositions. Evolution of the Famatinian orogen in three main stages at 486?468 Ma is invoked to explain different characteristics in four recognized domains in the type sector. (1) ca. 482-486?: shallow subduction stage; compression thickens the foreland and squeezes out the asthenospheric mantle wedge; trondhjemite plutons with adakitic signature are emplaced in the Foreland Domain; ensialic basins started opening and early metaluminous and peraluminous granites intruded the Central Domain. (2) 480?474 Ma: slab rollback; a mainly extensional interval involving asthenospheric upwelling and thinning of the subcontinental mantle; full development of ensialic basins and early emplacement of both metaluminous granites and highly-peraluminous batholiths. (3) 472?468 Ma: continental collision and slab breakoff due to subduction of continental crust; a flare-up magmatic episode at the western edge of the Central Domain; K-bentonites in the Precordillera, leucogranites in the Western domain and scattered emplacement of metaluminous and peraluminous plutons in all Famatinian domains. Stages (2) and (3) developed during a high-T regime (hot orogen). Although asthenospheric mantle was a necessary heat source for lithospheric melting, its contribution to the growth of Early Paleozoic crust was apparently very minor. Recycling of Mesoproterozoic lithosphere, including the subcontinental mantle, coupled with crustal melting of Early Paleozoic metasedimentary sequences, accounts for most of the Famatinian magmatism. Consistent results from the Central Andes and East Antarctica confirm that the early stages of SW Gondwana were dominated by lithospheric reworking processes.Fil: Rapela, Carlos Washington. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Pankhurst, Robert. British Geological Survey; Reino UnidoFil: Casquet, César. Universidad Complutense de Madrid; EspañaFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Fanning, Christopher Mark. Australian National University; AustraliaFil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Galindo, Carmen. Universidad Complutense de Madrid; EspañaFil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Murra, Juan Alberto Félix. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geologia Básica y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Stipp Basei, Miguel Angelo. Universidade de Sao Paulo; BrasilXVII Reunión de TectónicaLa RiojaArgentinaUniversidad Nacional de La RiojaAsociación Geológica Argentin

    A review of the Famatinian Ordovician magmatism in southern South America: Evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana

    Get PDF
    Along the proto-Pacific margin of Gondwana, from Venezuela to northeastern Patagonia, the Early–Middle Ordovician Famatinian orogeny was the first orogenic event following assembly of the supercontinent. Previous isotope studies of the igneous and (meta-)sedimentary rocks of southwestern Gondwana yield ambiguous implications for the role of juvenile mantle addition during the early crustal growth at the supercontinental margin. To interpret the geological and tectonic evolution of the orogen and the magma sources in different episodes we look at evidence from a large area of southern South America, including the 700 × 600 km type sector of the orogen in the Sierras Pampeanas (27°–33°S), the Precordillera, and northeastern Patagonia. Previous geological, geochemical and geochronological results are reviewed together with new U—Pb SHRIMP crystallization ages, 177Hf/176Hf and 18O/16O data for dated zircon, and whole-rock Sr and Nd isotope compositions. Four geological domains are recognized in the Sierras Pampeanas (Western, Central, Eastern and Foreland Famatinian domains). Magmatism is mostly restricted to the interval 463 ± 4 to 486 ± 7 Ma, with the most intense period of emplacement between 468 and 472 Ma constituting a magmatic flare-up. Granitoid emplacement in both northeastern Patagonia and the Cordon de Lila (Puna Altiplano, Chile) was effectively synchronous with that in the Sierras Pampeanas, defining a continuous belt. Combined geochemical and isotopic data (whole-rock Sr, Nd; Hf, O in zircon) indicate that the source of calcic metaluminous suites is the subcontinental lithosphere – both mantle and mafic lower crust – with variable contamination by the Early Paleozoic metasedimentary country rocks. The lithospheric mantle involved is assumed to underlie the outcropping 1330–1030 Ma age basement of the Western Domain, which exhibits tectonic characteristics of active continental margin in the north and oceanic arc-back arc in the south. The latter sector is the potential source of some minor Famatinian igneous rocks with less evolved isotopic compositions, although a restricted asthenospheric addition cannot be discarded in this case. Minor peraluminous granites are spatially associated with the metaluminous sequence, but major highly-peraluminous batholiths occur on the eastern flank of the Central Domain. Field relations and geochemical/isotopic evidence indicate that the most obvious source of these crustal melts was the very thick post-early Cambrian metasedimentary sequence comprising the host country rocks. Episodic tectono-magmatic evolution of the Famatinian magmatic belt in two overlapping stages is invoked to explain different characteristics in the four recognized domains in the type sector: • ca. 474–486? Ma, roll-back stage. This is a mainly extensional interval involving asthenospheric upwelling and thinning of the subcontinental mantle; full development of the marine ensialic basins and early emplacement of both metaluminous granites and highly-peraluminous batholiths in the Central and Eastern Famatinian domains. Trondhjemite plutons with an adakitic signature were emplaced in the Foreland Domain• ca. 468–472 Ma, slab break-off stage. Steepening of the oceanic slab and arc migration to the southwest ended with slab break-off due to subduction of continental crust during continental collision with the Precordillera terrane. This stage produced voluminous metaluminous magmatism at the western edge of the Central Domain (the flare-up episode), K-bentonites in the Precordillera, leucogranites in the Western Domain and scattered metaluminous and peraluminous plutons in all Famatinian domains.Both slab roll-back and break-off stages developed during a high-T regime typical of hot orogens. Although asthenospheric mantle was a necessary heat source for lithospheric melting, its material contribution to the growth of Early Paleozoic crust was apparently very minor. Recycling of Mesoproterozoic lithosphere, including the subcontinental mantle, coupled with crustal melting of Early Paleozoic metasedimentary sequences, accounts for most Famatinian magmatism. Comparable results from the Central Andes and East Antarctica confirm that the early stages of the Terra Australis orogen in SW Gondwana were dominated by lithospheric reworking processes.Fil: Rapela, Carlos Washington. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Geológicas. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Investigaciones Geológicas; ArgentinaFil: Pankhurst, Robert J.. British Geological Survey;Fil: Casquet, César. Universidad Complutense de Madrid; EspañaFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Fanning, Christopher Mark. Australian National University; AustraliaFil: Baldo, Edgardo Gaspar Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Galindo Francisco, Carmen. Universidad Complutense de Madrid; EspañaFil: Alasino, Pablo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Universidad Nacional de Catamarca. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Secretaría de Industria y Minería. Servicio Geológico Minero Argentino. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja. - Provincia de La Rioja. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja; ArgentinaFil: Ramacciotti, Carlos Dino. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Verdecchia, Sebastián Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Murra, Juan Alberto Félix. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Geologia Básica y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Stipp Basei, Miguel Angelo. Universidade de Sao Paulo; Brasi

    Early Ordovician magmatism in the Sierra de Ancaján, Sierras Pampeanas (Argentina): implications for the early evolution of the proto-Andean margin of Gondwana

    No full text
    El plutón Ancaján es un cuerpo ígneo elongado, de reducidas dimensiones (ca. 5.34 km2) y composición granodiorítica a monzogranítica que aflora en la Sierra de Ancaján (Sierras Pampeanas Orientales), intruyendo a mármoles y rocas metasedimentarias de la serie Ancaján de edad Ediacarense. Nuevas dataciones de U–Pb en circón realizadas en una muestra granodiorítica mediante SHRIMP y LA-MC-ICP-MS indican una probable edad de cristalización Ordovícica de unos 473 Ma. También se han registrado circones heredados de edades Cámbricas, Neoproterozoicas, Mesoproterozoicas y Paleoproterozoicas. Los granitoides de Ancaján son calcoalcalinos, magnesianos y ligeramente peraluminosos con contenidos medios a altos de K2O (2.44–3.74% en peso) y altos de Na2O (4.05–4.51% en peso). Estas características geoquímicas son comparables a las del magmatismo sódico de tipo TTG Ordovícico del Dominio de Antepaís Famatiniano (FFD) de las Sierras de Córdoba. En consecuencia, el pluton Ancaján podría representar el afloramiento más septentrional de dicho magmatismo. Los datos isotópicos (Sr/Sri = 0.7052–0.7055; εNdi = − 0.7 to − 0.4; TDM = 1.24–1.27 Ga) junto con la presencia de circones heredados, sugieren que el magma parental resultó de la fusión parcial de una fuente combinada, que estaría formada principalmente por un manto subcontinental más viejo con una composición que correspondería a una litosfera oceánica máfica-ultramáfica, junto con el reciclado/asimilación de corteza continental que involucraría granitoides Pampeanos y/o protolitos sedimentarios de edad Ediacarense a Cámbrica. Esta interpretación coincide con la postulada para los granitoides Ordovícicos ricos en Na de las Sierras de Córdoba. Las evidencias presentadas en este trabajo indican que las rocas metasedimentarias que afloran en la Sierra de Ancaján formaron parte de la placa continental superior durante la subducción Famatiniana, corroborando así, la imbricación previa de las series Ancaján y Puncoviscana durante la Orogenia Pampeana de edad Cámbrico temprano.The Ancaján pluton is a small-scale (ca. 5.34 km2) elongated igneous body of granodiorite to monzogranite composition that crops out in the Sierra the Ancaján (Eastern Sierras Pampeanas), intruding marbles and metasedimentary rocks of the Ediacaran Ancaján series. New SHRIMP and LA-MC-ICP-MS U–Pb zircon analyses from one granodiorite sample yielded a likely Ordovician crystallization age of ca. 473 Ma. Inherited Cambrian, Neoproterozoic, Mesoproterozoic and Paleoproterozoic ages have also been recorded. The Ancaján granitoids are calc-alkalic, magnesian and slightly peraluminous with medium to high K2O (2.44–3.74 wt%) and high Na2O (4.05–4.51 wt%) contents. These geochemical characteristics are comparable to those of the Ordovician Na-rich (TTG-like) magmatism of the Foreland Famatinian Domain (FFD) in the Sierras de Córdoba. Therefore, the Ancaján pluton could represent the northernmost outcrop of such magmatism. Isotopes data (Sr/Sri = 0.7052–0.7055; εNdi = − 0.7 to − 0.4; TDM = 1.24–1.27 Ga) and inherited zircon ages suggest that the parental magma probably resulted from partial melting of a combined source, mainly formed by older subcontinental mantle with mafic–ultramafic oceanic lithosphere composition, along with recycling/assimilation of continental crust involving Pampean granitoids and/or Ediacaran to Cambrian sedimentary protoliths. This interpretation is coincident with that postulated for the Ordovician Na-rich granitoids from the Sierras de Córdoba. The evidence shown here further implies that metasedimentary rocks of the Sierra de Ancaján were part of the continental upper plate during the Famatinian subduction, and corroborate the previous imbrication of the Ancaján and Puncoviscana series during the early Cambrian Pampean Orogeny.Fil: Zandomeni, Priscila Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Verdecchia, Sebastián Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Baldo, Edgardo Gaspar Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Galindo, Carmen. Universidad Complutense de Madrid; EspañaFil: Moreno Moreno, Juan Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Dahlquist, Juan Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Casquet, César. Universidad Complutense de Madrid; EspañaFil: Morales Camera, Matías Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Basei, Miguel A. S.. Universidade de Sao Paulo; BrasilFil: Ramacciotti, Carlos Dino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentin
    corecore