51 research outputs found

    New Aromatic Bisabolane Derivatives with Lipid-Reducing Activity from the Marine Sponge Myrmekioderma sp.

    Get PDF
    Publisher's version (útgefin grein)The previously reported 1-(2,4-dihydroxy-5-methylphenyl)ethan-1-one (1), (1’Z)-2-(1’,5’-dimethylhexa-1’,4’-dieny1)-5-methylbenzene-1,4-diol (2), and 1,8-epoxy-1(6),2,4,7,10-bisaborapentaen-4-ol (5) together with four new structures of aromatic bisabolane-related compounds (3, 4, 6, 7) were isolated from the marine sponge Myrmekioderma sp. Compounds 1, 2, and 5 were identified based on spectral data available in the literature. The structures of the four new compounds were experimentally established by 1D and 2D-NMR and (−)-HRESIMS spectral analysis. Cytotoxic and lipid-reducing activities of the isolated compounds were evaluated. None of the isolated compounds were active against the tested cancer cell lines; however, lipid-reducing activity was found for compounds 2–5 and 7 in the zebrafish Nile red fat metabolism assay. This class of compounds should be further explored for their suitability as possible agents for the treatment of lipid metabolic disorders and obesity. View Full-TextFunding: The research leading to these results received funding from the Marie Curie Actions of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement No. 607786, BluePharmTrain, and by the European ERA-NET Marine Biotechnology project CYANOBESITY (ERA-MBT/0001/2015), financed by national funds through FCT (Foundation for Science and Technology, Portugal), RANNIS (Icelandic Center of Research, Iceland), and FCT strategic fund UID/Multi/04423/2019. Ralph Urbatzka was supported by FCT grant SFRH/BPD/112287/2015.Peer Reviewe

    Actinobacteria from arctic and atlantic deep-sea sediments—biodiversity and bioactive potential

    Get PDF
    The deep-sea covers over 70% of the Earth’s surface and harbors predominantly uncharacterized bacterial communities. Actinobacteria are the major prokaryotic source of bioactive natural products that find their way into drug discovery programs, and the deep-sea is a promising source of biotechnologically relevant actinobacteria. Previous studies on actinobacteria in deep-sea sediments were either regionally restricted or did not combine a community characterization with the analysis of their bioactive potential. Here we characterized the actinobacterial communities of upper layers of deep-sea sediments from the Arctic and the Atlantic (Azores and Madeira) ocean basins, employing 16S rRNA metabarcoding, and studied the biosynthetic potential of cultivable actinobacteria retrieved from those samples. Metabarcoding analysis showed that the actinobacterial composition varied between the sampled regions, with higher abundance in the Arctic samples but higher diversity in the Atlantic ones. Twenty actinobacterial genera were detected using metabarcoding, as a culture-independent method, while culture-dependent methods only allowed the identification of nine genera. Isolation of actinobacteria resulted on the retrieval of 44 isolates, mainly associated with Brachybacterium, Microbacterium, and Brevibacterium genera. Some of these isolates were only identified on a specific sampled region. Chemical extracts of the actinobacterial isolates were subsequently screened for their antimicrobial, anticancer and anti-inflammatory activities. Extracts from two Streptomyces strains demonstrated activity against Candida albicans. Additionally, eight extracts (obtained from Brachybacterium, Brevibacterium, Microbacterium, Rhodococcus, and Streptomyces isolates) showed significant activity against at least one of the tested cancer cell lines (HepG2 and T-47D). Furthermore, 15 actinobacterial extracts showed anti-inflammatory potential in the RAW 264.4 cell model assay, with no concomitant cytotoxic response. Dereplication and molecular networking analysis of the bioactive actinobacterial extracts showed the presence of some metabolites associated with known natural products, but one of the analyzed clusters did not show any match with the natural products described as responsible for these bioactivities. Overall, we were able to recover taxonomically diverse actinobacteria with different bioactivities from the studied deep-sea samples. The conjugation of culture-dependent and -independent methods allows a better understanding of the actinobacterial diversity of deep-sea environments, which is important for the optimization of approaches to obtain novel chemically-rich isolates.info:eu-repo/semantics/publishedVersio

    Antiproliferative Effects of the Natural Oxadiazine Nocuolin A Are Associated With Impairment of Mitochondrial Oxidative Phosphorylation

    Get PDF
    Natural products are interesting sources for drug discovery. The natural product oxadiazine Nocuolin A (NocA) was previously isolated from the cyanobacterial strain Nodularia sp. LEGE 06071 and here we examined its cytotoxic effects against different strains of the colon cancer cell line HCT116 and the immortalized epithelial cell line hTERT RPE-1. NocA was cytotoxic against colon cancer cells and immortalized cells under conditions of exponential growth but was only weakly active against non-proliferating immortalized cells. NocA induced apoptosis by mechanism(s) resistant to overexpression of BCL family members. Interestingly, NocA affected viability and induced apoptosis of HCT116 cells grown as multicellular spheroids. Analysis of transcriptome profiles did not match signatures to any known compounds in CMap but indicated stress responses and induction of cell starvation. Evidence for autophagy was observed, and a decrease in various mitochondrial respiration parameter within 1 h of treatment. These results are consistent with previous findings showing that nutritionally compromised cells in spheroids are sensitive to impairment of mitochondrial energy production due to limited metabolic plasticity. We conclude that the antiproliferative effects of NocA are associated with effects on mitochondrial oxidative phosphorylation

    Actinobacteria Isolated From Laminaria ochroleuca: A Source of New Bioactive Compounds

    Get PDF
    Nature is the major reservoir of biologically active molecules. The urgent need of finding novel molecules for pharmaceutical application is prompting the research of underexplored environments, such as marine ecosystems. Here, we investigated cultivable actinobacteria associated with the macroalgae Laminaria ochroleuca and assessed their potential to produce compounds with antimicrobial or anticancer activities. A specimen of L. ochroleuca was collected in a rocky shore in northern Portugal, and fragments of tissues from different parts of the macroalgae (holdfast, stipe, and blades) were surface sterilized and plated in three culture media selective for actinobacteria. A total of 90 actinobacterial strains were isolated, most of which affiliated with the genus Streptomyces. Isolates associated with the genera Isoptericola, Rhodococcus, Nonomuraeae, Nocardiopsis, Microbispora, and Microbacterium were also obtained. Organic extracts from the isolates were tested for their antimicrobial activity using the agar-based disk diffusion method, followed by determination of minimum inhibitory concentration (MIC) values. Forty-five isolates inhibited the growth of Candida albicans and/or Staphylococcus aureus, with MIC values ranging from <0.5 to 1000 μg mL−1. The actinobacterial isolates were also tested for their anticancer potential on two human cancer cell lines. Twenty-eight extracts affected the viability of at least one human cancer cell line (breast carcinoma T-47D and neuroblastoma SH-SY5Y) and non-carcinogenic endothelial cell line (hCMEC/D3). Seven extracts affected the viability of cancer cells only. This study revealed that L. ochroleuca is a rich source of actinobacteria with promising antimicrobial and anticancer activities and suggests that macroalgae may be a valuable source of actinobacteria and, consequently, of new molecules with biotechnological importance

    Uncovering the Cyanobacterial Chemical Diversity: The Search for Novel Anticancer Compounds

    Get PDF
    This article belongs to the Proceedings of The 7th Iberian Congress on Cyanotoxins/3rd Iberoamerican Congress on Cyanotoxins[Abstract] Cancer has a tremendous negative socio-economic impact on our society. Thus, the discovery of new and more effective anticancer drugs is of utmost importance. To address this societal challenge, the main goal of the CYANCAN project was the discovery of anticancer compounds from cyanobacteria. These photosynthetic bacteria are considered among the most promising groups capable of producing metabolites with pharmaceutical applications. A valuable and underexplored natural resource that can underpin the discovery of promising compounds can be found in the Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) at CIIMAR (Interdisciplinary Centre of Marine and Environmental Research), comprising more than 700 different cyanobacterial strains. Herein, we present the recent advances implemented for finding robust anticancer lead compounds from LEGE-CC cyanobacteria. For this purpose, we developed a natural product library. Sixty cyanobacterial strains, representative of LEGE-CC biodiversity, were chromatographed to yield 480 fractions that were tested for their cytotoxic activity against 2D and 3D models of human colon carcinoma (HCT 116). The conjugation of monolayer assays and 3D cancer spheroids led to the selection of 11 active fractions, of which the chemical space was studied using an untargeted metabolomics approach. The putative annotation and identification of several compounds led to the selection of two marine strains for compound isolation: Leptothoe sp. and Lusitaniella coriacea. The isolation of the compounds was guided through bioactivity assays and mass spectrometry. These molecules were purified from the crudes by employing several chromatography methods, and the chemical structures were determined by means of NMR (nuclear magnetic resonance) and MS/MS (tandem mass spectrometry) experiments. Thus, a novel macrolide-type compound was isolated from Leptothoe sp., which presented a highly cytotoxic activity against our cancer cell models. Its effects on cancer vascularization and metastasis were studied using the zebrafish model. Moreover, from L. coriacea, five unprecedented salicyl-capped thiazol(in)e NRPs-PKs (nonribosomal peptides-polyketides) compounds were isolated. These compounds showed the potential to act as reversers of P-glycoprotein efflux activity.CIIMAR strategic funds UIDB/04423/2020 and UIDP/04423/2020; CYANCAN PTDC/MED-QUI/30944/2017, co-financed by NORTE 2020, Portugal 2020, and the European Union through the ERDF. EMERTOX: EU Horizon 2020 R&I programme under the Marie Skłodowska-Curie grant agreement No 778,069. Ribeiro, T: FCT grant SFRH/BD/139131/2018. Castelo-Branco, R: FCT grant SFRH/BD/136367/2018Centro Interdisciplinar de Investigação Marinha e Ambiental (Porto); UIDB/04423/2020Portugal. Fundação para a Ciência e a Tecnologia; PTDC/MED-QUI/30944/2017Portugal. Fundação para a Ciência e a Tecnologia; SFRH/BD/139131/2018Portugal. Fundação para a Ciência e a Tecnologia; SFRH/BD/136367/201

    Actinobacteria from Arctic and Atlantic deep-sea sediments—Biodiversity and bioactive potential

    Get PDF
    The deep-sea covers over 70% of the Earth’s surface and harbors predominantly uncharacterized bacterial communities. Actinobacteria are the major prokaryotic source of bioactive natural products that find their way into drug discovery programs, and the deep-sea is a promising source of biotechnologically relevant actinobacteria. Previous studies on actinobacteria in deep-sea sediments were either regionally restricted or did not combine a community characterization with the analysis of their bioactive potential. Here we characterized the actinobacterial communities of upper layers of deep-sea sediments from the Arctic and the Atlantic (Azores and Madeira) ocean basins, employing 16S rRNA metabarcoding, and studied the biosynthetic potential of cultivable actinobacteria retrieved from those samples. Metabarcoding analysis showed that the actinobacterial composition varied between the sampled regions, with higher abundance in the Arctic samples but higher diversity in the Atlantic ones. Twenty actinobacterial genera were detected using metabarcoding, as a culture-independent method, while culture-dependent methods only allowed the identification of nine genera. Isolation of actinobacteria resulted on the retrieval of 44 isolates, mainly associated with Brachybacterium, Microbacterium, and Brevibacterium genera. Some of these isolates were only identified on a specific sampled region. Chemical extracts of the actinobacterial isolates were subsequently screened for their antimicrobial, anticancer and anti-inflammatory activities. Extracts from two Streptomyces strains demonstrated activity against Candida albicans. Additionally, eight extracts (obtained from Brachybacterium, Brevibacterium, Microbacterium, Rhodococcus, and Streptomyces isolates) showed significant activity against at least one of the tested cancer cell lines (HepG2 and T-47D). Furthermore, 15 actinobacterial extracts showed anti-inflammatory potential in the RAW 264.4 cell model assay, with no concomitant cytotoxic response. Dereplication and molecular networking analysis of the bioactive actinobacterial extracts showed the presence of some metabolites associated with known natural products, but one of the analyzed clusters did not show any match with the natural products described as responsible for these bioactivities. Overall, we were able to recover taxonomically diverse actinobacteria with different bioactivities from the studied deep-sea samples. The conjugation of culture-dependent and -independent methods allows a better understanding of the actinobacterial diversity of deep-sea environments, which is important for the optimization of approaches to obtain novel chemically-rich isolates

    Bioactivities and Extract Dereplication of Actinomycetales Isolated From Marine Sponges

    Get PDF
    In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. Actinobacteria are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen Actinomycetales isolated from marine sponges of three Erylus genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus Aspergillus fumigatus, the bacteria Staphylococcus aureus methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain Dermacoccus sp. #91-17 and Micrococcus luteus Berg02-26. Gordonia sp. Berg02-22.2 showed anti-parasitic (Trypanosoma cruzi) and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, Microbacterium foliorum #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (Danio rerio). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that Actinomycetales are indeed good candidates for drug discovery
    corecore