7,734 research outputs found

    Entanglement in the dispersive interaction of trapped ions with a quantized field

    Get PDF
    The mode-mode entanglement between trapped ions and cavity fields is investigated in the dispersive regime. We show how a simple initial preparation of Gaussian coherent states and a postselection may be used to generate motional non-local mesoscopic states (NLMS) involving ions in different traps. We also present a study of the entanglement induced by dynamical Stark-shifts considering a cluster of N-trapped ions. In this case, all entanglement is due to the dependence of the Stark-shifts on the ions' state of motion manifested as a cross-Kerr interaction between each ion and the field.Comment: 10 pages, 5 figures, corrected typo

    Spin-Torque-Induced Rotational Dynamics of a Magnetic Vortex Dipole

    Full text link
    We study, both experimentally and by numerical modeling, the magnetic dynamics that can be excited in a magnetic thin-film nanopillar device using the spin torque from a spatially localized current injected via a 10s-of-nm-diameter aperture. The current-driven magnetic dynamics can produce large amplitude microwave emission at zero magnetic field, with a frequency well below that of the uniform ferromagnetic resonance mode. Micromagnetic simulations indicate that the physical origin of this efficient microwave nano-oscillator is the nucleation and subsequent steady-state rotational dynamics of a magnetic vortex dipole driven by the localized spin torque. These results show this novel implementation of a spintronic nano-oscillator is a promising candidate for microwave technology applications.Comment: 19 pages, 4 figures

    Outflows and Jets from Collapsing Magnetized Cloud Cores

    Full text link
    Star formation is usually accompanied by outflow phenomena. There is strong evidence that these outflows and jets are launched from the protostellar disk by magneto-rotational processes. Here, we report on our three dimensional, adaptive mesh, magneto-hydrodynamic simulations of collapsing, rotating, magnetized Bonnor-Ebert-Spheres whose properties are taken directly from observations. In contrast to the pure hydro case where no outflows are seen, our present simulations show an outflow from the protodisk surface at ~ AU and a jet at ~ 0.07 AU after a strong toroidal magnetic field build up. The large scale outflow, which extends up to ~ AU at the end of our simulation, is driven by toroidal magnetic pressure (spring), whereas the jet is powered by magneto-centrifugal force (fling). At the final stage of our simulation these winds are still confined within two respective shock fronts. Furthermore, we find that the jet-wind and the disk-anchored magnetic field extracts a considerable amount of angular momentum from the protostellar disk. The initial spin of our cloud core was chosen high enough to produce a binary system. We indeed find a close binary system (separation ~ 3 R_sol) which results from the fragmentation of an earlier formed ring structure. The magnetic field strength in these protostars reaches ~ 3 kG and becomes about 3 G at 1 AU from the center in agreement with recent observational results.Comment: revised version, accepted for publication in ApJ, a higher resolution version of this paper can be downloaded at http://www.physics.mcmaster.ca/~banerjee/outflows.pd

    Scattering Theory of Charge-Current Induced Magnetization Dynamics

    Full text link
    In ferromagnets, charge currents can excite magnons via the spin-orbit coupling. We develop a novel and general scattering theory of charge current induced macrospin magnetization torques in normal metal∣|ferromagnet∣|normal metal layers. We apply the formalism to a dirty GaAs∣|(Ga,Mn)As∣|GaAs system. By computing the charge current induced magnetization torques and solving the Landau-Lifshitz-Gilbert equation, we find magnetization switching for current densities as low as 5×106 5\times 10^{6}~A/cm2^2. Our results are in agreement with a recent experimental observation of charge-current induced magnetization switching in (Ga,Mn)As.Comment: Final version accepted by EP

    IUE archived spectra

    Get PDF
    The International Ultraviolet Explorer (IUE) Satellite has been in continuous operation since January 26, 1978. To date, approximately 65,000 spectra have been stored in an archive at Goddard Space Flight Center in Greenbelt, MD. A number of procedures have been generated to facilitate access to the data in the IUE spectral archive. This document describes the procedures which include on-line quick look of the displays, search of an observation data base for selected observations, and several methods for ordering data from the archive

    An experimental investigation of criteria for continuous variable entanglement

    Get PDF
    We generate a pair of entangled beams from the interference of two amplitude squeezed beams. The entanglement is quantified in terms of EPR-paradox [Reid88] and inseparability [Duan00] criteria, with observed results of Δ2Xx∣y+Δ2Xx∣y−=0.58±0.02\Delta^{2} X_{x|y}^{+} \Delta^{2} X_{x|y}^{-} = 0.58 \pm 0.02 and Δ2Xx±y+Δ2Xx±y−=0.44±0.01\sqrt{\Delta^{2} X_{x \pm y}^{+} \Delta^{2} X_{x \pm y}^{-}} = 0.44 \pm 0.01, respectively. Both results clearly beat the standard quantum limit of unity. We experimentally analyze the effect of decoherence on each criterion and demonstrate qualitative differences. We also characterize the number of required and excess photons present in the entangled beams and provide contour plots of the efficacy of quantum information protocols in terms of these variables.Comment: 4 pages, 5 figure

    Entanglement conditions for two-mode states: Applications

    Get PDF
    We examine the implications of several recently derived conditions [Hillery and Zubairy, Phys. Rev. Lett. 96, 050503 (2006)] for determining when a two-mode state is entangled. We first find examples of non-Gaussian states that satisfy these conditions. We then apply the entanglement conditions to the study of several linear devices, the beam splitter, the parametric amplifier, and the linear phase-insensitive amplifier. For the first two, we find conditions on the input states that guarantee that the output states are entangled. For the linear amplifier, we determine in the limit of high and no gain, when an entangled input leads to an entangled output. Finally, we show how application of two two-mode entanglement conditions to a three-mode state can serve as a test of genuine three-mode entanglement.Comment: 7 pages, no figures, replaced with published versio

    Giant Relaxation Oscillations in a Very Strongly Hysteretic SQUID ring-Tank Circuit System

    Get PDF
    In this paper we show that the radio frequency (rf) dynamical characteristics of a very strongly hysteretic SQUID ring, coupled to an rf tank circuit resonator, display relaxation oscillations. We demonstrate that the the overall form of these characteristics, together with the relaxation oscillations, can be modelled accurately by solving the quasi-classical non-linear equations of motion for the system. We suggest that in these very strongly hysteretic regimes SQUID ring-resonator systems may find application in novel logic and memory devices.Comment: 7 pages, 5 figures. Uploaded as implementing a policy of arXiving old paper

    Spin-dependent transport in molecular tunnel junctions

    Full text link
    We present measurements of magnetic tunnel junctions made using a self-assembled-monolayer molecular barrier. Ni/octanethiol/Ni samples were fabricated in a nanopore geometry. The devices exhibit significant changes in resistance as the angle between the magnetic moments in the two electrodes is varied, demonstrating that low-energy electrons can traverse the molecular barrier while maintaining spin coherence. An analysis of the voltage and temperature dependence of the data suggests that the spin-coherent transport signals can be degraded by localized states in the molecular barriers.Comment: 4 pages, 5 color figure
    • …
    corecore