20 research outputs found

    In situ polymerisation of isoeugenol as a green consolidation method for waterlogged archaeological wood

    Get PDF
    Waterlogged archaeological wood is often in need of consolidation prior to drying to prevent shrinkage and cracking of the object. There is a need for new greener materials (than for example polyethylene glycol) and methods for consolidation to be developed. The use of wood-based components could provide good interaction between the consolidant and the remaining wood structure and would also support a shift away from fossil fuel-based materials to those with more sustainable sources. Based on this, lignin-like structures have been investigated for their ability to consolidate waterlogged archaeological wood. The in situ formation of a lignin-like material has been carried out using isoeugenol polymerised by horse radish peroxidase in aqueous solution. The formation of the oligomeric/polymeric materials within the wood following this reaction has been determined by Attenuated Total Reflectance Fourier Transform Infra Red (ATR-FTIR) spectroscopy. The oligomers remaining in solution have been characterised by ATR-FTIR and nuclear magnetic resonance (NMR) spectroscopy as well as analytical ultracentrifugation, showing that they have a weight average Mw of 0.4–0.9 kDa and a lignin-like structure rich in the β-5′ moiety. Therefore, this approach is proposed as a basis to further develop a green consolidation method for waterlogged archaeological wood

    Serum 25-Hydroxyvitamin D and the Incidence of Acute Viral Respiratory Tract Infections in Healthy Adults

    Get PDF
    Declining serum concentrations of 25-hydroxyvitamin D seen in the fall and winter as distance increases from the equator may be a factor in the seasonal increased prevalence of influenza and other viral infections. This study was done to determine if serum 25-hydroxyvitamin D concentrations correlated with the incidence of acute viral respiratory tract infections.In this prospective cohort study serial monthly concentrations of 25-hydroxyvitamin D were measured over the fall and winter 2009-2010 in 198 healthy adults, blinded to the nature of the substance being measured. The participants were evaluated for the development of any acute respiratory tract infections by investigators blinded to the 25-hydroxyvitamin D concentrations. The incidence of infection in participants with different concentrations of vitamin D was determined. One hundred ninety-five (98.5%) of the enrolled participants completed the study. Light skin pigmentation, lean body mass, and supplementation with vitamin D were found to correlate with higher concentrations of 25-hydroxyvitamin D. Concentrations of 38 ng/ml or more were associated with a significant (p<0.0001) two-fold reduction in the risk of developing acute respiratory tract infections and with a marked reduction in the percentages of days ill.Maintenance of a 25-hydroxyvitamin D serum concentration of 38 ng/ml or higher should significantly reduce the incidence of acute viral respiratory tract infections and the burden of illness caused thereby, at least during the fall and winter in temperate zones. The findings of the present study provide direction for and call for future interventional studies examining the efficacy of vitamin D supplementation in reducing the incidence and severity of specific viral infections, including influenza, in the general population and in subpopulations with lower 25-hydroxyvitamin D concentrations, such as pregnant women, dark skinned individuals, and the obese

    A Rapid Crosstalk of Human γδ T Cells and Monocytes Drives the Acute Inflammation in Bacterial Infections

    Get PDF
    Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from other T cells by their immediate responsiveness to microbes. We previously demonstrated that the primary target for Vγ9/Vδ2 T cells is (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an essential metabolite produced by a large range of pathogens. Here we wished to study the consequence of this unique responsiveness in microbial infection. The majority of peripheral Vγ9/Vδ2 T cells shares migration properties with circulating monocytes, which explains the presence of these two distinct blood cell types in the inflammatory infiltrate at sites of infection and suggests that they synergize in anti-microbial immune responses. Our present findings demonstrate a rapid and HMB-PP-dependent crosstalk between Vγ9/Vδ2 T cells and autologous monocytes that results in the immediate production of inflammatory mediators including the cytokines interleukin (IL)-6, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and oncostatin M (OSM); the chemokines CCL2, CXCL8, and CXCL10; and TNF-related apoptosis-inducing ligand (TRAIL). Moreover, under these co-culture conditions monocytes differentiate within 18 hours into inflammatory dendritic cells (DCs) with antigen-presenting functions. Addition of further microbial stimuli (lipopolysaccharide, peptidoglycan) induces CCR7 and enables these inflammatory DCs to trigger the generation of CD4+ effector αβ T cells expressing IFN-γ and/or IL-17. Importantly, our in vitro model replicates the responsiveness to microbes of effluent cells from peritoneal dialysis (PD) patients and translates directly to episodes of acute PD-associated bacterial peritonitis, where Vγ9/Vδ2 T cell numbers and soluble inflammatory mediators are elevated in patients infected with HMB-PP-producing pathogens. Collectively, these findings suggest a direct link between invading pathogens, microbe-responsive γδ T cells, and monocytes in the inflammatory infiltrate, which plays a crucial role in the early response and the generation of microbe-specific immunity

    Survival without respiratory viral infection over course of study, stratified by serum 25-hydroxyvitamin D concentrations.

    No full text
    <p>Results of Cox proportional hazard analysis for time to viral infection, stratified by serum 25-hydroxyvitamin D concentrations. Parameters included 103 events (viral infections), 3 in the ≥38 ng/ml group and 100 in the <38 ng/ml group, and 114 censorings (15 without infection in the ≥38 ng/ml group, 99 in the <38 ng/ml group, and 3 lost to follow-up). The parameter estimate for 25-hydroxyvitamin D≥38 ng/ml was −0.66 (−1.36—0.17) 95% CI and the risk ratio 0.51 (0.25 to 0.84) 95% CI (p<0.0001).</p

    Analysis<sup>a</sup> of variables between groups with 25-hydroxyvitamin D concentrations of ≥38 ng/ml and <38 ng/ml.

    No full text
    a<p>Contingency tables calculating two-tailed p values using Fisher's exact test with Bonferroni correction for multiple testing were used.</p

    Predicted vs. observed serum 25-hydroxyvitamin D concentrations.

    No full text
    <p>Predicted from the equation [serum vitamin D ng/ml] = [427.4×(1+pigmentation grade)<sup>0.5</sup>+(dose IU/day) <sup>0.5</sup>]/Body mass index, where body mass index = (weight lbs)(703)/height inches)<sup>2</sup>. See text for pigmentation grade. The observed concentrations were from the first observation period. Model parameters were SSE = 18755.12; DFE = 197; RMSE = 9.75. The error associated with the parameter estimate was 427.4 +/− 10.4 (SEM) (406.8–448.0) 95% CI.</p

    Length of time to viral infection related to initial serum concentration of 25-hydroxyvitamin D.

    No full text
    <p>Shown are the results of the pharmacodynamic model relating 25-hydroxyvitamin D to length of time before a viral respiratory tract infection. The model equation is Log(time to event) = b<sub>0</sub>+b<sub>1</sub>/(Maximal 25OH-Vit D–serum 25-OH vitamin D+1) calculated using a Weibull loss function. The parameters associated with the regression are as follows, given with 95% CI and P-values: b<sub>0</sub> = 4.29 (3.50–4.96), <0.001; b<sub>1</sub> = 38.33 (9.64–76.48), <0.001; Sigma = 0.79 (0.65–0.97), <0.001. Overall P-value for this model was <0.0023. Curves are fitted 0.1, 0.5 and 0.9 quantiles as a function of the regressor. The x points represent individuals who developed viral infections, and the other points represent individuals who did not develop infections and the three who were not followed until the end of the observation period. For the individuals who developed viral infections (x points) the mean age was 46.9 years; there were 47% men; 76.5% had light pigmentation, 18.8% intermediate pigmentation, 4.7% dark pigmentation; the mean initial 25-hydroxyvitamin D concentration was 26.12 ng/ml; and the mean vitamin D supplementation 292.5 IU. For the individuals who did not develop viral infections (the other points) the mean age was 47.0 years; there were 39.8% men; 78.8% had light pigmentation, 14.2% intermediate pigmentation, 7.0% dark pigmentation; the mean initial 25-hydroxyvitamin D concentration was 30.03 ng/ml; and the mean vitamin D supplementation 601.4 IU.</p
    corecore