1,013 research outputs found
Stereoscopic Retrieval of Smoke Plume Heights and Motion from Space-Based Multi-Angle Imaging, Using the MISR INteractive eXplorer(MINX)
Airborne particles desert dust, wildfire smoke, volcanic effluent, urban pollution affect Earth's climate as well as air quality and health. They are found in the atmosphere all over the planet, but vary immensely in amount and properties with season and location. Most aerosol particles are injected into the near-surface boundary layer, but some, especially wildfire smoke, desert dust and volcanic ash, can be injected higher into the atmosphere, where they can stay aloft longer, travel farther, produce larger climate effects, and possibly affect human and ecosystem health far downwind. So monitoring aerosol injection height globally can make important contributions to climate science and air quality studies. The Multi-angle Imaging Spectro-Radiometer (MISR) is a space borne instrument designed to study Earths clouds, aerosols, and surface. Since late February 2000 it has been retrieving aerosol particle amount and properties, as well as cloud height and wind data, globally, about once per week. The MINX visualization and analysis tool complements the operational MISR data products, enabling users to retrieve heights and winds locally for detailed studies of smoke plumes, at higher spatial resolution and with greater precision than the operational product and other space-based, passive remote sensing techniques. MINX software is being used to provide plume height statistics for climatological studies as well as to investigate the dynamics of individual plumes, and to provide parameterizations for climate modeling
A structural connectivity convergence zone in the ventral and anterior temporal lobes: Data-driven evidence from structural imaging.
The hub-and-spoke model of semantic cognition seeks to reconcile embodied views of a fully distributed semantic network with patient evidence, primarily from semantic dementia, who demonstrate modality-independent conceptual deficits associated with atrophy centred on the ventrolateral anterior temporal lobe. The proponents of this model have recently suggested that the temporal cortex is a graded representational space where concepts become less linked to a specific modality as they are processed farther away from primary and secondary sensory cortices and towards the ventral anterior temporal lobe. To explore whether there is evidence that the connectivity patterns of the temporal lobe converge in its ventral anterior end the current study uses three dimensional Laplacian eigenmapping, a technique that allows visualisation of similarity in a low dimensional space. In this space similarity is encoded in terms of distances between data points. We found that the ventral and anterior temporal lobe is in a unique position of being at the centre of mass of the data points within the connective similarity space. This can be interpreted as the area where the connectivity profiles of all other temporal cortex voxels converge. This study is the first to explicitly investigate the pattern of connectivity and thus provides the missing link in the evidence that the ventral anterior temporal lobe can be considered a multi-modal graded hub
Population dynamics of brome grass in relation to control systems
Trial 86C1
Location: East Chapman Research Station.
To identify the level of control of brome grass under various crop rotation systems so that farmers can be advised on the degree of infestation likely to be encountered when using a particular system.To design the best control system to reduce quickly the anticipated large seed population of brome grass in the soil
Agreement Between Experts and an Untrained Crowd for Identifying Dermoscopic Features Using a Gamified App: Reader Feasibility Study
Background
Dermoscopy is commonly used for the evaluation of pigmented lesions, but agreement between experts for identification of dermoscopic structures is known to be relatively poor. Expert labeling of medical data is a bottleneck in the development of machine learning (ML) tools, and crowdsourcing has been demonstrated as a cost- and time-efficient method for the annotation of medical images.
Objective
The aim of this study is to demonstrate that crowdsourcing can be used to label basic dermoscopic structures from images of pigmented lesions with similar reliability to a group of experts.
Methods
First, we obtained labels of 248 images of melanocytic lesions with 31 dermoscopic “subfeatures” labeled by 20 dermoscopy experts. These were then collapsed into 6 dermoscopic “superfeatures” based on structural similarity, due to low interrater reliability (IRR): dots, globules, lines, network structures, regression structures, and vessels. These images were then used as the gold standard for the crowd study. The commercial platform DiagnosUs was used to obtain annotations from a nonexpert crowd for the presence or absence of the 6 superfeatures in each of the 248 images. We replicated this methodology with a group of 7 dermatologists to allow direct comparison with the nonexpert crowd. The Cohen κ value was used to measure agreement across raters.
Results
In total, we obtained 139,731 ratings of the 6 dermoscopic superfeatures from the crowd. There was relatively lower agreement for the identification of dots and globules (the median κ values were 0.526 and 0.395, respectively), whereas network structures and vessels showed the highest agreement (the median κ values were 0.581 and 0.798, respectively). This pattern was also seen among the expert raters, who had median κ values of 0.483 and 0.517 for dots and globules, respectively, and 0.758 and 0.790 for network structures and vessels. The median κ values between nonexperts and thresholded average–expert readers were 0.709 for dots, 0.719 for globules, 0.714 for lines, 0.838 for network structures, 0.818 for regression structures, and 0.728 for vessels.
Conclusions
This study confirmed that IRR for different dermoscopic features varied among a group of experts; a similar pattern was observed in a nonexpert crowd. There was good or excellent agreement for each of the 6 superfeatures between the crowd and the experts, highlighting the similar reliability of the crowd for labeling dermoscopic images. This confirms the feasibility and dependability of using crowdsourcing as a scalable solution to annotate large sets of dermoscopic images, with several potential clinical and educational applications, including the development of novel, explainable ML tools
Response to "Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET"
A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account
Warped accretion discs and the long periods in X-ray binaries
Precessing accretion discs have long been suggested as explanations for the
long periods observed in a variety of X-ray binaries, most notably Her X-1/HZ
Her. We show that an instability of the disc's response to the radiation
reaction force from the illumination by the central source can cause the disc
to tilt out of the orbital plane and precess in something like the required
manner. The rate of precession and disc tilt obtained for realistic values of
system parameters compare favourably with the known body of data on X-ray
binaries with long periods. We explore other possible types of behaviour than
steadily precessing discs that might be observable in systems with somewhat
different parameters. At high luminosities, the inner disc tilts through more
than 90 degrees, i.e. it rotates counter to the usual direction, which may
explain the torque reversals in systems such as 4U 1626-67.Comment: submitted to MNRAS, 17-Dec-97, revised submit 2-Nov-98. 15 pages
LaTeX, 11 postscript figures in-tex
Recommended from our members
Land application of treated sludge sewage : guidelines for communities and farm operators
Published December 1978. Facts and recommendations in this publication may no longer be valid. Please look for up-to-date information in the OSU Extension Catalog: http://extension.oregonstate.edu/catalo
The geography of recent genetic ancestry across Europe
The recent genealogical history of human populations is a complex mosaic
formed by individual migration, large-scale population movements, and other
demographic events. Population genomics datasets can provide a window into this
recent history, as rare traces of recent shared genetic ancestry are detectable
due to long segments of shared genomic material. We make use of genomic data
for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of
recent genealogical ancestry over the past three thousand years at a
continental scale. We detected 1.9 million shared genomic segments, and used
the lengths of these to infer the distribution of shared ancestors across time
and geography. We find that a pair of modern Europeans living in neighboring
populations share around 10-50 genetic common ancestors from the last 1500
years, and upwards of 500 genetic ancestors from the previous 1000 years. These
numbers drop off exponentially with geographic distance, but since genetic
ancestry is rare, individuals from opposite ends of Europe are still expected
to share millions of common genealogical ancestors over the last 1000 years.
There is substantial regional variation in the number of shared genetic
ancestors: especially high numbers of common ancestors between many eastern
populations likely date to the Slavic and/or Hunnic expansions, while much
lower levels of common ancestry in the Italian and Iberian peninsulas may
indicate weaker demographic effects of Germanic expansions into these areas
and/or more stably structured populations. Recent shared ancestry in modern
Europeans is ubiquitous, and clearly shows the impact of both small-scale
migration and large historical events. Population genomic datasets have
considerable power to uncover recent demographic history, and will allow a much
fuller picture of the close genealogical kinship of individuals across the
world.Comment: Full size figures available from
http://www.eve.ucdavis.edu/~plralph/research.html; or html version at
http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm
- …